Changes

Jump to navigation Jump to search
no edit summary
Let <math>T</math> denote the set of pairs of individuals who have True Love, such that:
:<math>\forall\{i,j\} \in T: \quad (i \succ_j h \quad \forall h \ne i) \And wedge (j \succ_i h \quad \forall h \ne j), \quad h \in H \cup \{\emptyset\}</math>
Note that:
Recall that a preference relation is rational if it is complete and transitive:
#Completeness: <math>\forall x,y \in X: \quad x \succsim y \;\Orlor\; y \succsim x</math>#Transitivity: <math>\forall x,y,z \in X: \quad \mbox{if}\; \; x \succsim y \;\Andwedge\; y \succsim z \;\mbox{then}\; x \succsim z</math>
Also recall the definition of the strict preference relation:

Navigation menu