Changes
Jump to navigation
Jump to search
De Figueiredo (2002) - Electoral Competition Political Uncertainty And Policy Insulation (view source)
Revision as of 16:51, 31 May 2010
, 16:51, 31 May 2010no edit summary
In each period:
*Nature selects player <math>A\,</math> to move with probality <math>\gamma \in (0,1)\,</math> and <math>B\,</math> to move with <math>1-\gamma\,</math>. <math>\gamma\,</math> is the probability of being elected.
**Political uncertainty is modelled by <math>\gamma\,</math> close to <math>\frac{1}{2}\,</math>. With <math>\gamma=1\,</math> or <math>\gamma=0\,</math> , <math>A\,</math> or <math>B\,</math> are certain to be elected, respectively.
**Political uncertainty is decreasing in <math>|\gamma - \frac{1}{2}|\,</math>
*If elected a player implements their program with certainty.
*As <math>\gamma\,</math> approaches <math>\frac{1}{2}\,</math> cooperation can be sustained over a wider range of parameters.
**Therefore as political uncertainty increases it is easier to sustain cooperation.
**The diagram on p16 shows that the 'cooperative payoff' that can be supported is a V shaped (parabolic) function with respect to <math>\gamma\,</math>, with a vertex at <math>\frac{1}{2}\,</math>
*As long as players are sufficiently risk averse, this will hold even if conflict is one-dimensional.
*The basic results also hold if there are n institutions which must be controlled to pass the legislation.
*In general the stronger player will have weaker incentives to cooperate.
==The Insulation Game (IG)==
Insulation, in this context, means making institutional changes to help prevent legislation from being overturned. For example passing a requirement that the legislation could only be overturned with a supermajority, is a form of insulation.
Again there are two players, <math>A\,</math> and <math>B\,</math>, who play an infinitely repeated game. Players can implement their program with certainty, and the moving player has the opportunity to <math>Overturn\,</math> or <math>Not Overturn\,</math> the other players existing legislation. However, now players can additionally choose to <math>Insulate\,</math> or <math>Not Insulate\,</math>, denoted <math>I\,</math> and <math>NI\,</math>. This action is only available in the first period that a player is recognized.
If a player plays <math>NI\,</math>, the game is identical to the RG game above. If a player chooses <math>I\,</math>, then his payoffs are modified by <math>\alpha \in (0,1)\,</math>, but his program remains in place forever, so that the player recieves <math>\alpha\beta\,</math> if the other players program is in place, and <math>\alpha\,</math> if not. Note that <math>1 > \alpha > \alpha\beta > 0\,</math>. <math>\alpha\,</math> can be thought of as modelling 'the cost of insulating'.
Insulation can be thought of as:
*A way to avoid punishment strategies
*A way to trade benefits while in power for benefits while out of power.
The paper provides three propositions (3a,3b,3c) on pages 22-23:
*If <math>\alpha is sufficiently large, both players play<math> \{(I,O)\}\,</math>
*If <math>\alpha is not sufficiently large to play <math>\{(I,O)\}\,</math>, an equilibrium is either: <math>\{(I,O);(NI,0)\}\,</math> or <math>\{(NI,O);(I,0)\}\,</math> if <math>\alpha\,</math> is sufficiently large
*If <math>\alpha is sufficiently small, the neither player will insulate
Proposition 4 states: As political uncertainty increases the parameter space over which the 1st and 3rd equilibria hold increases, while the parameter space over which the 2nd equilibrium holds decreases.
From above, it is clear that the equilibrium strategy depends on the cost of insulating (<math>\alpha\,</math>). A diagram showing how the strategy space varies with both the costs of insulating and the political uncertainty (i.e. who is favoured to be relected). The following results are important for intuition:
*As the costs become very high (<math>\alpha\,</math> becomes very small), only those with a very small chance of getting reelected will insulate (to get some on-going benefits, as this will outweigh the costs).
The paper claims that public agencies will therefore be less effective (c.f efficient) than private ones:
*Electoral uncertainty leads to inefficient insulation - as political uncertainty increases, so does insulation.
*However, as per proposition 4, increasing political uncertainty also increases the range over which no insulation occurs - actually it is groups that are electorially weak that will insulate.
*If the costs of insulation are high, groups will choose not to insulate their programs - only groups with extremely weak future election prospects will do so.
*Most agencies created by policy will not be insulated (on average the strong players win and don't insulate), and therefore inefficiency can not be attributed to political uncertainty in most cases.
==Other Notes==
In the context of regulation being requested by the radio industry (to avoid congestion, etc), the paper references:
*Stigler's (1972) capture model
*Wilson's (1989) "client politics"
The FCC and related institutions were created during a period of policy certainty and ended up independent and self-governing. Trade policy, on the other hand, was close to the Reciprocity Game - when one party gained power the tariffs where increased, when the other gained power the tariffs were decreased. The Democrats found an IG type answer to this in 1930, when they created the RTAA, ceding power over tariffs to the president; presidents (even Republican ones) were inherently more liberal on trade than legislators.