Changes

Jump to navigation Jump to search
no edit summary
Derivation of proposition 1:
* <math>z_{i}>\delta\bar{V}</math>. <math> b_{i}-T/n\geq\bar{V} \implies b_{i}\geq T/n+\delta\bar{V}<\/math>.
* Proposal will be accepted if <math>(n-1)/2</math> members vote yes, therefore proposals will be of the form of: Keep <math>B-\frac{n-1}{2}(\frac{T}{n+\delta\bar{V}}. Give <math>T/n +\delta\bar{V}</math to <math>(n-1)/2</math> others, and the rest zero.
* <math>\bar{V}</math>=P(selected)E[Value of being selected|p^{\ast})+P(not selected)(value of not being selected).
* <math>\bar{V}=\frac{1}{n}(B-\frac{n-1}{2}(T/n+\delta\bar{V}))+\frac{n-1}{n}(\frac{1}{2}(T/n+\delta\bar{V}) +\frac{1}{2}(-T/n))</math>. Solve for <math>\bar{V}=\frac{B-T}{n}<\/math>.
* Offer is <math>T/n+\frac{\delta(B-T)}{n}=\frac{\delta B-(1-\delta)T}{n}</math>.
Anonymous user

Navigation menu