Changes
Jump to navigation
Jump to search
Alonso Dessein Matouschek (2008) - When Does Coordination Require Centralization (view source)
Revision as of 21:06, 23 November 2010
, 21:06, 23 November 2010no edit summary
Proposition 1 in the paper gives the communication equilibria: If <math>\delta \in (0, \infty)\;</math>, then for every positive interger <math>N_j\;</math>, there exists at least one equilibrium <math>(\mu_1(\cdot),\mu_2(\cdot),d_1(\cdot),d_2(\cdot),g_1(\cdot),g_2(\cdot))\;</math> where:
#<math>\mu_j(m_j|\theta_j) \sim U[a_{j,i-1},a_{j,i}]\;</math> if <math>\theta_j\;</math> in <math>(a_{j,i-1},a_{j,i})\;</math>
#<math>g_j(\theta_j|m_j) \sim U[a_{j,i-1},a_{j,i}]\;</math> if <math>\m_j\;</math> in <math>(a_{j,i-1},a_{j,i})\;</math>
#<math>a_{j,i+1}-a_{j,i} = a_{j,i} -a_{j,i-1} + 4b a_{j,i}\;</math> for <math>i=1,\ldots,N_j-1\;</math>, where <math>b = b_C\;</math> or <math>b_D\;</math> appropriately
#<math>d_j(m,\theta_j) = d_j^l\;</math>