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ENTRY, EXIT, AND FIRM DYNAMICS 
IN LONG RUN EQUILIBRIUM' 

BY HUGO A. HOPENHAYN2 

This paper develops and analyzes a dynamic stochastic model for a competitive 
industry which endogenously determines processes for entry and exit and for individual 
firms' output and employment. The concept of stationary equilibrium is introduced, 
extending long run industry equilibrium theory to account for entry, exit, and heterogene- 
ity in the size and growth rate of firms. Conditions under which there will be entry and 
exit in the stationary equilibrium are given. Cross-sectional properties-across size and 
age cohorts-are analyzed and compared to the data. Implications for the equilibrium 
distributions of profits and the value of firms are analyzed. The effect of changes in the 
parameters describing the technological and market conditions of the industry on the 
equilibrium size distribution and turnover rates are also analyzed. 

KEYwORDS: Entry and exit; firm dynamics; selection; survival analysis. 

1. INTRODUCTION 

This paper studies an equilibrium model of entry and exit and firm dynamics. 
Recent empirical work and research have emphasized the predominant role 
that firm specific sources of uncertainty have in accounting for firm size 
dynamics. As a consequence of this idiosyncratic uncertainty substantial amounts 
of resources are reallocated across firms, from contracting and exiting ones to 
new and expanding ones. The main objective of the paper is to contribute to our 
understanding of some economic determinants of this process and to build up a 
tractable structure for its analysis. This is achieved by developing the steady 
state analysis of the industry equilibrium model. 

The quantitative significance of this reallocation is reflected in the high 
turnover rates of jobs and firms. Approximately a third of the stock of jobs and 
over forty percent of the firms in manufacturing disappear over five year periods 
and are replaced by new ones.3 In connection to this process of job/firm 
creation and destruction, two important facts arise from the recent empirical 
studies: (i) firm specific uncertainty dominates firm level dynamics and (ii) entry 
and exit rates are highly correlated across industries and most of their variation 
is accounted for by these industry effects. That is, there are high and low 

lThe original name was "A Dynamic Stochastic Model of Entry and Exit to an Industry." 
21 wish to thank Rody Manuelli for helpful comments and Edward C. Prescott for his advice. 

The new version has substantially benefited from excellent comments of the referees. In particular, 
one of the referees provided an extremely meticulous report, and should recognize in the text some 
of his/her own writing. This work was done under NSF Grant #SES-8911789. 

3 For evidence on job creation and destruction for U.S. manufactures, see Davis and Haltiwanger 
(1991), Dunne, Roberts, and Samuelson (1989b). Leonard (1987) studies the relationship between 
growth and size for Wisconsin firms. Evans (1987) and Hall (1987) provide evidence on growth 
properties of firms also by age. For evidence on entry and exit, see Dunne, Roberts, and Samuelson 
(1989a, 1989b). 

1127 



1128 HUGO A. HOPENHAYN 

turnover industries. Our modeling strategy is influenced by these two observa- 
tions. 

In our model, firms are faced with individual productivity shocks and this is 
the only source of uncertainty. On the basis of their shocks, they decide 
optimally when to exit the industry. As firms exit the industry, new ones come 
in. Entry requires an investment that is nonrecoverable and becomes sunk 
thereafter. In the steady state the entry and exit rates are equal and so is job 
creation and destruction. The steady state also implies stationary distributions 
for firm size, profits, and value. Though these distributions and all aggregates 
remain constant through time, this is by the offsetting effect of firm level entry, 
exit, growth, and contraction. For given aggregate industry demand and input 
supply functions, the characteristics of the process for firm shocks, the cost of 
entry, and production technology determine the stationary equilibrium distribu- 
tions and the entry and exit rate. The comparative statics analysis of the 
stationary equilibrium is developed in the paper. 

The idea that the dynamics of firm size can be explained by stochastic models 
of firm evolution with purely idiosyncratic shocks has been in the literature for a 
long time. Hart and Prais (1956), Simon and Bonini (1958) and Adelman (1958) 
had remarkable success in fitting statistical models to the data by specifying 
particular processes for firm size. Competitive equilibrium theory of industry 
evolution was first developed by Lucas and Prescott (1971). The equilibrium in 
their model implies a stochastic process for price, aggregate output, and 
investment but no firm level heterogeneity and no entry and exit. Lucas (1978) 
analyzed size distribution of firms in a more specialized model. His model, 
however, does not focus explicitly on entry and exit. Dynamic models of entry 
and exit were first developed by Brock (1972) and Vernon Smith (1974). In these 
models firms have identical size and in the limit there is no entry and exit. 

The equilibrium models described above have no firm specific stochastic 
elements that can give rise to the observed firm dynamics. Jovanovic (1982) 
introduced the first model of this kind. In his model firms are subject to 
productivity shocks drawn from a distribution with unknown mean but known 
variance. The mean is specific to a firm and realizations are independent across 
firms. The equilibrium leads to selection through exit and entry. His model is 
equivalent to one where productivity shocks follow a particular (nonstationary) 
process. Pakes and Ericson (1990) discuss the implications of more general 
versions of this learning model and compare them to those of a model of their 
own, which is based on the idea that firms' production is affected by investments 
with uncertain outcomes (see also Ericson and Pakes (1989)). 

These two models are rich in their implications for firm level dynamics, which 
has been the focus of their analysis. But from the aggregate point of view, they 
are complex dynamical systems, so their general analysis or even numerical 
computation turns out to be a complicated task. The main objective of this 
paper is to provide a simpler framework to address some questions relating to 
the process of job and firm reallocation. The concept of a stationary equilibrium 
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developed here, which corresponds to the steady state analysis of a dynamical 
system, provides this more tractable structure. As this concept extends to other 
models of firm dynamics, our research is complementary to existing work.4 

Steady state analysis has been used in economics to study the long run 
properties of dynamic models. We use it here to understand how changes in the 
structural characteristics of an industry (as given by parameters of the model) 
affect turnover, growth of firms, and the distributions of size, profits, and value 
of firms. In particular we analyze the effects of changes in the costs of entry, 
fixed costs, demand, and some characteristics of the process for firms' shocks. A 
stationary equilibrium need not have positive entry and exit. As an example, 
Jovanovic's model is one which exhibits no entry and exit in the limit. In the 
paper we discuss conditions under which positive entry and exit will occur. 

The stationary equilibrium implies a size distribution of firms by age cohorts. 
Empirical evidence indicates that this size distribution is stochastically increas- 
ing in the age of firm cohorts. In our model this distribution is derived from the 
exogenous process for firms' shocks, production decisions, and the selection that 
results from the endogenous exit decision. We provide general conditions on the 
exogenous stochastic process under which such empirical regularity holds. 

The paper is organized as follows. Section 2 describes the model. Section 3 
defines an industry equilibrium and proves existence and uniqueness. Section 4 
develops similar results for a stationary equilibrium. Section 5 provides the 
analysis of the model. It is divided in three parts. The first deals with life cycle 
properties of firms: size distribution and age. The second one develops the 
comparative statics. The third one provides some results concerning profits and 
the value of firms. Section 6 provides the final remarks. 

2. THE MODEL 

The industry is composed by a continuum of firms which produce a homoge- 
neous product. Firms behave competitively, taking prices in the output and 
input markets as given. Aggregate demand is given by the inverse demand 
function D(Q) and the input price by W(N), where N is total industry demand 
for the input. We consider here the case of a single input-e.g. labor-but all 
results extend to the case of multiple inputs under standard homotheticity 
assumptions. We make the following assumption: 

ASSUMPTION A.1: (a) D is continuous, strictly decreasing, and lim X D(x) = 

0. (b) W is continuous, nondecreasing, and strictly bounded above zero. 

4 Lippman and Rummelt (1982) also develop steady state analysis and the comparative statics in 
a model with firm specific shocks. However, in their model the firm specific shock does not change 
through time, so all uncertainty is resolved after entry. Hence, no reallocation takes place in the 
steady state. Still, this model provides some interesting insights about the relationship between size 
distribution and the (ex-post) excess returns of firms. 
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The output of an individual firm is q =f('p, n), where *o e S [0,11 is a 
productivity shock which follows a Markov process independent across firms 
with conditional distribution F(p' 1'). In addition, a fixed cost Cf must be paid 
every period by incumbent firms. Note that a positive fixed cost is necessary for 
exit to take place and is equivalent to the existence of a fixed outside opportu- 
nity cost for some resources (e.g. managerial ability) used by the firm. For given 
output and input prices p and w, let r(Gp,p,w), q(Gp,p,w), and n(Gp,p,w) 
denote, respectively, the profit, output supply, and input demand functions. 
Note that r(GO, 0, w) = - Cf. Firms discount profits with a constant factor 
0 < 3 < 1. We assume the following: 

ASSUMPTION A.2: (a) q and n are single valued, strictly increasing in (o, 
and continuous; (b) v is continuous and strictly increasing in (p; (c) 
limQ4 0 r(Q, D(Q), w) > 0. 

ASSUMPTION A.3: (a) F is continuous in SO and sp'; (b) F is strictly decreasing 
in p. 

ASSUMPTION A.4: (Recurrence): For any E > 0 there exists an integer n such 
that Fn(, I oq) > 0, where Fn(. I 'p) gives the distribution of given Pt = p. 

Assumption A.3.b says the higher is the productivity shock in period t, the 
more likely are higher shocks in period t + 1. Together with A.2 this implies 
that expected discounted profits are an increasing function of a firm's current 
shock 'p. In equilibrium firms exit the industry whenever their state falls below a 
reservation level x. Given this cutoff point, Assumption A.4 implies that the life 
span of a firm is almost surely finite, preventing the mass of firms from escaping 
to a no exit region. Also note that as a consequence of A.2, for given p > 0 and 
w > 0 profits are uniformly bounded. 

Each period, before the new shocks are realized, incumbent firms may exit 
the industry and potential entrants may enter. A firm that exits secures a 
present value which we normalize to zero. To enter, a firm must pay an entry 
cost Ce > 0. After paying this cost its productivity shock, which is drawn from an 
initial distribution v, is revealed. We make the following assumption: 

ASSUMPTION A.5: v has a continuous distribution function G. 

After observing their shocks, firms make their output decisions and prices are 
determined competitively to equate aggregate demand and supply in the respec- 
tive markets. These equilibrium prices will obviously depend on the number and 
shocks of firms producing in the industry that period. This information is 
summarized by a measure At over firms' shocks; the total mass Mt = At(S) is a 
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measure of the total size of the industry, while for any borel set A c S, At,(A) is 
the mass of firms with shocks in A. We call At the state of the industry in period 
t. Aggregating output supply and input demand functions of all firms we obtain 

(1) QS(,p,W) = fq(9p,p,w)(dp), and 

(2) Nd( ,u,p,w) = n(p,p,w)p4(dp). 

The only source of uncertainty in the model are the firm specific productivity 
shocks. Since there are a large number of firms, and since the conditional 
distribution function F and the probability measure v over initial states are the 
same for all firms, the frequency distribution for the idiosyncratic shocks each 
period coincides with the probability distribution dictated by the initial distribu- 
tion, the conditional distribution function, and the entry and exit rules.5 Since 
there are no industry-wide shocks, this implies that aggregate output, employ- 
ment, prices, and the frequency distribution for So follow deterministic paths. 
That is, a competitive equilibrium, given the initial measure AO over types of 
firms has a deterministic sequence {(pt, wt , tt)}. Therefore, in the firm's deci- 
sion problem analyzed in the following section, the sequence {(pt, wt)) is 
deterministic; only its own productivity parameter fpt is stochastic. 

Letting Au be the initial distribution of firm's shocks, the industry is thus 
defined by the following list of elements: {D( *), W( ), cf, Ce, f, S, F, v, AO). 

3. EQUILIBRIUM 

Potential entrants and incumbent firms maximize expected discounted profits 
with perfect foresight on future prices. In consequence, exit decisions are a 
function of the sequence of future prices. Given price sequences z = {Pt, wt) the 
problem of an incumbent firm is defined recursively by 

(3) vt(p,oz) = max({7r(,o,pt,wt)} +f8max (O, vt+i(' fz)F(d P'I)} 

Hence vt gives the value of a firm of type So at period t after the realization of 
its new shock. Also note that the exit decision is made prior to observing next 

5Technical problems exist when, as in our case, there is a continuum of random variables. Judd 
(1985), Feldman and Gilles (1985), Uhlig (1987), and Green (1989) discuss ways in which a law of 
large numbers can be justified. Since independence does not play any role in our model we can 
assume that the realizations for 'closely' located firms are correlated in the way shown by Feldman 
and Gilles. With this assumption the distribution of realizations across firms will coincide with the 
distribution of the process. 
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period's shock and will involve a reservation rule: 

(4) xt=inf( E 5: fvt+1(q',z)F(d(p'Ilp) > ) or 

x= 1 if this set is empty. 

A firm will exit the industry the first time its shock gets below this reservation 
value, i.e. the first time qt < xt. 

PROPOSITION 1 (Properties of vt): Let z be a bounded sequence of prices and 
wages such that wt > w > 0. Then: (i) the functions vt are continuous in p and for 
Pt > 0 strictly increasing in p; (ii) if 0 x, < 1, then fvt+ (', z)F(d9tjx,) = O; 
(iii) vt is uniformly bounded. 

PROOF: (i) Continuity follows from standard dynamic programming argu- 
ments using continuity and boundedness of 7r and continuity of F. Strict 
monotonicity in o for pt > 0 follows from A.2. (ii) follows from (i) and the 
continuity of F. (iii) follows from discounting and the uniform boundedness of 
prices. Q.E.D. 

New firms will enter the market until expected discounted profits net of the 
entry cost is zero. For a potential entrant, expected discounted profits are given 
by 

(S) vt (z) = vt(p, z)v(d(p) . 

Let Mt denote the mass of entrants in period t. Free entry implies that in 
equilibrium v1e(z) S ce, with equality if Mt > 0. 

The entry and exit rules imply an evolution for the state of the industry lit 
which satisfies for each p' E [0,11 

(6) At+ 409 (/))= F(qP'j9)At(dq) +Mt,+G(q') 
> x t 

where G is the distribution function corresponding to v. An alternative and 
convenient expression for equation (6) can be obtained as follows. For all borel 
sets A in S define 

A(p, A) {JAF(dsIj) if 
9 

>xt 
O otherwise. 

Note that Pt defines a bounded linear operator on the space of positive 
bounded measures defined by P,Atu(A) = JP(gp, A)put(d(p) for all borel sets A in 
S, with operator norm IlPtll < 1. Using this we rewrite (6) as follows: 

{07 .. _ D..... 1 A . 
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The last term in this equation gives the contribution of new entrants to t+l 
Note that this embodies the assumption that the distribution from which 
entrants draw their initial shock is also the distribution of realized values across 
new entrants. 

A competitive equilibrium for the industry consists of bounded sequences 
{p*), {w*), {Q*), {Nt*), {Mt*), (x*), (At) such that: 

(i) (a) p* =D(Q*) and w* = W(Nt*); 
(b) Q* = Qs(Q4 p* ,w*) and Nt* = Nd(t, p* , w*). 

(ii) x* satisfies (4). 
(iii) ve(z*) < Ce with equality if Mt* > 0, where z* = {p*, w*). 
(iv) ,u* is defined recursively by (7) given ,uo, Mt*, and x*. 
Condition (i) says that prices are market clearing. Condition (ii) says that the 

exit rule is chosen optimally. Condition (iii) says that there are no further 
incentives to enter the industry, and (iv) that the sequence of distributions are 
consistent with the law of motion generated by the equilibrium exit rules and 
mass of entrants. 

Equilibria in this model maximize net discounted surplus. This is a familiar 
result in models of industry equilibria. Lucas and Prescott (1971) first estab- 
lished this in a model where firms' technology exhibits constant returns to scale, 
all shocks are aggregate and there is no entry and exit. The same is proved by 
Jovanovic (1982), where all shocks are firm specific and follow a more specific 
but nonstationary process. Both of these results are extended in Hopenhayn 
(1990) to a general setup that also covers the case considered here. Theorems 1 
and 2 in Hopenhayn (1990) can be used to establish existence and uniqueness of 
a competitive equilibrium starting from an arbitrary measure Au. Since the focus 
of this paper is on the stationary equilibria, for which a specific existence proof 
is provided in Section 4, we give here only a brief outline of the existence 
argument for the general case. For more details see Hopenhayn (1990). 

Starting from /uo the feasible set RFAuO) is defined as the set of all sequences 
{Nt, Qt) such that there exist sequences {(t, Mt, xt*), where ,ut is derived from 
,uO and the entry and exit rules as given by equation (7), and feasible input 
output plans for the firms in each period that aggregate to Nt and Qt. In 
Hopenhayn (1990) it is established that the feasible set is closed and convex.6 

Starting from an initial distribution ,t, the sequential problem solved by the 
equilibrium allocations is given by 

00 

(8) V(,) = max Ef3't[R(Qt)-C( Nt)-CeMt-Cf/t(S)] 
t=O 

subject to {Nt, Qt} e F(t) 

where R(Q) = JfQD(x) dx and C(N) = JONW(x) dx. 

6The convexity is obtained allowing firms with the same shocks to choose different actions. 
Though this is ruled out here, it is without loss of generality since by Assumption A.2 the profit 
maximizing output choice is unique and Assumptions A.3 and A.5 imply that the set of firms with 
p =x* has measure zero. 
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Without loss of generality function D may be assumed bounded. It is easy to 
show that the period return is uniformly bounded above on the feasible set. In 
consequence (N, Q,) can be restricted to a compact subset Y of DR2 and the 
objective in (8) is bounded and continuous-in the product topology-on Y . 
Since YV is compact, it follows that the maximum in (8) exists. Given the 
correspondence between competitive equilibria and solutions to (8) proved in 
Hopenhayn (1990), this also implies existence of a competitive equilibrium. 
Furthermore, as shown in the following theorem, (8) has a unique solution, so 
the competitive equilibrium is unique. 

THEOREM 1: Given any initial distribution there exists a unique equilibrium. 

PROOF: Existence follows from the above argument. To establish uniqueness 
note that if (Q0, NO) and (Q1, N1) are two input output vectors such that 
D(QO) # D(Q1) or W(NO) # W(N1) and A E (0, 1), then 

R(QA) - C(NA) > A[R(Qo) - C(No)] + (1 -A) [R(Q1) - C(N1)] 

where QA and NA are the obvious convex combinations. This, together with the 
convexity of the feasible set, implies that if two distinct equilibrium allocations 
exist they must have the same prices. An immediate implication is that exit rules 
will coincide for all equilibria. Since D is strictly decreasing, aggregate output 
will also be the same for all equilibria. Now it is easy to see that starting from 
the initial distribution, the mass of entrants for the first period will coincide for 
all equilibria and, recursively, so will it be in the following periods. Q.E.D. 

REMARK: The sequential problem in (8) can be written as a dynamic pro- 
gramming problem which by the previous theorem has a unique solution. The 
state of this programming problem is A, and its solution implies a dynamical 
system on the space of bounded positive measures given by , +1 =H(,ut), 
where H is a nonlinear map. 

The rest of the paper is concerned with a stationary equilibrium, which is a 
vector (p*,w*,Q*,N*,x*,M*,,u*) such that for pt=p*, wt=w*, Qt=Q*, 
Nt= N*, Xt = x*, Mt = M*, tt = /*, {Pt, wtg Qt, Nt, Mt, xt, )t) is an equilibrium 
from AO =A*. 

The stationary equilibrium can also be defined by singly imposing the station- 
arity requirement At = /* since, as established in Section 4, given /* there exist 
unique equilibrium prices p* and w* that satisfy condition (i) of the definition 
of equilibrium. It follows that the stationary equilibrium corresponds to the 
steady state of the dynamical system defined in the Remark to Theorem 1. 

4. STATIONARY EQUILIBRIA: EXISTENCE, ENTRY, AND EXIT 

This section addresses the existence and uniqueness of a stationary equilib- 
rium with entry and exit. The arguments developed in this section are also used 
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in the comparative statics analysis of the following section. The method of proof 
is algorithmic, providing guidelines for the computation of equilibria. 

Given any distribution of firms ,u with ,(S) > 0 there exist a unique aggre- 
gate input-output vector (N, Q) and prices (p, w) that satisfy (i) in the definition 
of equilibrium (Lemma 3). Let pe( A) and We( A) denote these equilibrium 
prices. That is, pe and We are defined by 

pe(,) =D[Q(,, pe(,u),we(,A))], and 

we(,) = W'[N(,u, pe(,I), we(,I))}. 

Define r((p, A) as the current profits for a firm of type p in a market where 
prices are pe(UA) and We(,u). Similarly, define v(p, ) as its present discounted 
value. This function is the unique solution to 

(9) V ( SO, AU) = 7T ( S9, AU) + max 40,8 vB6 ( S9', ,u ) F ( dS9' l Qo)). 

All properties of v are derived from corresponding properties of iFr and F. 
The key properties of fr are given in the following Proposition, proved in the 
Appendix. 

PROPOSITION 2: The function fr is jointly continuous, strictly increasing in 0p, 
and decreasing in ,u. 

The next Proposition gives the key properties of v used in the paper. 

PROPOSITION 3 (Properties of v): There exists a unique continuous solution v to 
(9) and (i) it is strictly increasing in 'p and decreasing in ,u; (ii) the integral on (9) 
is strictly increasing in 'p. 

PROOF: Existence and continuity of v follow immediately from Proposition 2, 
A.3(a), and weak* convergence, applying standard dynamic programming argu- 
ments. (i) follows from the properties of fr and Assumption A.3(b). (ii) is a 
consequence of (i) and A.3(b). Q.E.D. 

We now express the equilibrium conditions for exit and entry using the above. 
A consequence of Proposition 3 is that for given ,u the exit point x satisfying 
equation (4) for prices p(,u) and w(,u) is unique. Furthermore, if 0 < x < 1 then 

(10) fv('p', A)F(d'dpIx) = 0. 

The following condition is necessary for an equilibrium with invariant mea- 
sure ,u to exhibit positive entry: 

r11 v.~,j)v(()=C 
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Now suppose m(x, M) is an invariant measure for exit rule x and entry mass 
M. Letting P. be the transition operator for exit rule x as defined in Section 3 
and m(x,M), 

(12) y P,U + Mv. 

A stationary equilibrium with positive entry is then given by (x, M, u) that 
satisfy equations (10)-(12). 

The steps of the existence proof are then as follows. Prove that m(x,M) 
is well defined, jointly continuous, decreasing in x, and increasing in M 
(Lemmas 4 and 5). For a fixed exit rule x E (0, 1] define Ml(x) by 
Jv[p, m(x, M1(x))]F(dp lx) = 0, i.e. M1(x) is the entry rule with the property 
that for the invariant measure m(x, M1(x)), the exit rule x is optimal. M1 is 
well-defined, continuous, and strictly increasing (Lemma 6). These properties 
are derived from those of function v given in Proposition 3. 

Define M2(x) for x E (0,1] by 

fv(q, m(x, M2(x))v(dqp) = ce, 

i.e. if the exit rule is x then M2(x) is the mass of entrants that are needed so 
that expected discounted profits for entrants are equal to the cost of entry. M2 
is well defined, continuous, and nondecreasing (Lemma 7). 

An equilibrium with positive entry exists if and only if there is an x* E (0,1] 
such that Ml(x*) = M2(x*). 

Figure 1 depicts the graph of functions M1 and M2. Since v(p, m(l, M)) has 
a maximum at 'p = 1 for all M > 0, it follows that M1(1) > M2(1). This leaves two 
possibilities: (a) there exists some point such that M1 < M2, and thus an 
equilibrium exists-as in Figure 1; (b) M1 is always above M2. 

Though no equilibrium with M> 0 exists in case (b), there does exist an 
equilibrium with M = 0. For this case the equilibrium price vector has to be 
such that (i) there are no incentives to enter the industry, and (ii) firms with 
state p = 0 prefer staying in the industry rather than exiting. This leaves room 

0 

0 1 
Exit point 

FIGURE 1.-Existence of stationary equilibrium. 
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for the following indeterminacy: Denoting by ,u the unique invariant probability 
distribution for the Markov process given by F, the stationary equilibria are 
given by A,u for some A E [A, A]. If A = 0, then ,u =0 and thus an empty 
industry is an equilibrium. This occurs when costs of entry are prohibitively 
high. For A > 0, it must be the case that x = 0, so the firms that are already in 
the industry remain there forever. 

From the above analysis we conclude the following: 

THEOREM 2: There exists a stationary competitive equilibrium for the industry. 

Under what conditions will the equilibria have positive entry and exit? 
Intuitively, the cost of entry acts as an entry barrier. So existence of this type of 
equilibria depends on the height of this barrier relative to demand. This is 
summarized in the following result: 

THEOREM 3: Given the technological and demand assumptions there is a real 
number c* > 0 such that a stationary equilibrium with positive entry exists if and 
only if ce <c*. 

The comparative statics results presented in the next section are justified 
when the stationary equilibrium is unique. This requires curves M1 and M2 to 
intersect only once. To derive conditions that rule out multiple crossings 
consider hypothetically the case where there are two intersections at points x1 
and x2, where x2> x1. Let i1x and Au2 be the corresponding measures. Then 
V(X1, AU2) < V(X2, ,U2) = 0, and v(xl, ,1) = 0. Thus, there must exist some p such 
that V(p, t2) <i7(q pM). But since fv(Gp, ,tl)v(dp) = fv(, ,u 2)v(dsp), while 
profits at ,u2 are lower for some level of p, they cannot be lower for all of them. 
The following conditions imply that profits for all productivity states move in the 
same direction, excluding this possible behavior. 

CONDITION U.1: The industry is price taker in the input markets, i.e. it operates 
on a region where from the point of view of the industry there is unlimited supply of 
inputs at price w. 

CONDITION U.2: The profit function is separable in the following form 
r(p, p, w) = h( p)g(p, w), for some functions h and g. 

THEOREM 4: If either U.1 or U.2 are satisfied and if there exists an equilibrium 
with entry and exit, the equilibrium is unique. 

Note that one standard case considered in the literature, namely that where 
firm's technology is given by a cost function of the form c(p, q), satisfies U.1. 
Production functions of the form f(fp, n) = (pg(n), where g is homogeneous of 
degree k E (0,1) generate profit functions with 7V(2) = (P2/AP1)1/( -k) v((P1) for 
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all 9p and 902 in S, which obviously satisfy Condition U.2. Production functions 
that are homogeneous of degree one in the vector of inputs and shocks will also 
satisfy this assumption.7 

An important step in the existence argument is proving that for any exit rule 
x > 0 and entry M > 0 there exists a unique invariant measure, i.e. m(x, M) is 
well defined. This invariant measure is given by the fixed point of the mapping 
defined by equation (12). In the Appendix we establish that as a consequence of 
Assumption A.4 the inverse of the operator (IP- x exists, so 

00 

(13) , = M(I-Px) v=MEPX 
t=O 

where Pxt is the composition Of Px with itself t times and PX2 =I, the iden- 
tity operator. The role of Assumption A.4 (recurrence) is to guarantee that 
the series in equation (13) converges. For a fixed exit rule x, letting At be the 
probability that a firm is still in the industry t periods after entry and yI the 
corresponding probability distribution for its shock ~p, 

00 00 

(14) E PXv(A) = E kt It(A) 
t=O t=O 

for any borel set A. For A = [0, 1], the right-hand side of (14) equals the 
expectation of the stopping time derived from exit rule x, i.e. the average age at 
exit. Existence of a stationary equilibrium with positive entry and exit is thus 
equivalent to the existence of a stopping rule with finite expectation and a mass 
of entrants such that for the (stationary) prices that correspond to the associ- 
ated invariant distribution this stopping rule is optimal and the expected 
discounted profits of entrants are equal to the cost of entry. The analysis in this 
section could have been carried out without the recurrence assumption replac- 
ing 0 as the lower point in Figure 1 by the infimum of {x E SIErx < oo}, where rx 
is the stopping time associated with a stopping rule x. 

This also suggests that the idea of a stationary equilibrium with entry and exit 
can be extended to a setup where firms' shocks follow a nonstationary process. 
Jovanovic's selection model (1982) is one of this class. However, he proves there 

7One special case that allows for firm's states to be a vector of the form (P1,. pdk), is the 
homogeneous CES function: 

q 
( A 

IID 
la +. + 09kIDk)l + (n,IDI)' 

+(nj/Dj)-(l/a)] a/(- 1) 

with profit function 

F/(1-) 1 k a/(l -a) 

H [pI-a- E (Diwi)1j a i/Di)/ 

provided p1 -a > Ei -a (see McFadden (1978)). 
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is no entry and exit in the limit and thus no stationary equilibrium with entry 
and exit. This occurs precisely because the stopping time derived in the model 
has positive probability at infinity, and thus infinite expectation. 

5. PROPERTIES OF THE STATIONARY EQUILIBRIUM 

This section is divided in three parts. The first one, focuses on the life cycle 
(birth, growth, and death) of firms. The second one gives comparative statics 
results. The third one discusses implications of the model for the distribution of 
firm values and profits. 

Birth, Growth, and Death of Firms 

Given the production function and stationary equilibrium prices, the dynam- 
ics of firm size is driven by the evolution of the productivity shock. Here, this 
process is specified by the pair (v, F), which are exogenously given. Since the 
analysis that follows depends only on some general properties of this process, it 
can also be of interest for models where the process is derived endogenously so 
that v and F depend on the equilibrium prices. For instance, if firm's can take 
costly actions that improve the conditional distribution for their shocks, as in 
Ericson and Pakes (1989), at the equilibrium prices firm evolution will also be 
given by a Markov process on 'p. If regardless of the level of prices, the derived 
process satisfies our general conditions, the implications for firm dynamics will 
follow. 

Our model implies an evolution for the size distribution of firms by age 
cohorts. A striking regularity found in empirical studies is that this size distribu- 
tion is stochastically increasing in age. Under what conditions on (v, F) will our 
model lead to such behavior? The size of a firm measured either by inputs or 
output is an increasing function of its productivity shock 'p. So we seek 
conditions under which t the distribution of shocks for firms of age t, is 
increasing in t. 

Fix an exit point x E S and for any probability measure A on S let HXA 
denote the conditional probability of A on the set [x, 1]. Hx is the linear 
operator defined by 

(HxA)k(A) =A(A n [x,1])/A([x, 1]), for all borel sets A cS. 

Let T denote the linear operator on measures associated to the conditional 
distribution function F defined by 

(Tjx)([O, Z)) = F(z, (p)A(dep) , for all zE [0, 1]. 

Note that for all t, It+1 = (T o H )It. So if T o Hx is a monotone operator, 
i.e. (To ?HA12-(ToHx)A 1 whenever A2-Ay1 and (To Hx) increases v, i.e. 
,,= (T o Hx)v > v-where the ordering considered on measures is the first 
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stochastic dominance-it follows by induction that the sequence {},) will be 
increasing. What properties of v and F give this result? 

Assumption A.3(b) implies that T is monotone. Is it enough just to assume 
additionally that it increases v? For a positive measure ,u, it is easy to check 
that Hxp. A,u. In particular, Hxv a v and since T is monotone, ? = T o Hxv = 

T(Hxv) a Tv. So if Tv a v, then by transitivity of the stochastic order , a v. 
Now suppose y,t >- v. Since HJi t a4i, it follows that + = T(HJt) > Tt > 
Tv a v. This proves the following proposition. 

PROPOSITION 3: Assume A.3(b) and that T increases v. Then , >, v for all t. 

Note that by Proposition 3 the expectation of any increasing function will be 
at its minimum for the most recent entrants. This implies not only that the 
average value of firms and profits will be at a minimum but that hazard rates 
will be highest for this cohort. The latter is consistent with survival data for 
manufacturing reported by Dunne, Roberts, and Samuelson. 

Unfortunately the assumptions of Proposition 3 are not sufficient to obtain 
the stronger result, namely that the sequence A, is increasing. The problem is 
that though T is monotone, T o H, is not. This happens because H. is not a 
monotone operator.8 To get stronger results stronger monotonicity conditions 
are needed so that T increases the distribution even after the truncation 
resulting from exit. We now define a stronger order that survives this truncation. 

For two distributions Al and ,u2, we will say that ,u2 >mcd Al (read ,u2 is 
greater than Al in the monotone conditional dominance (mcd) order) if 
H,A2 a, H, A1 for all z E [0,1]. Note that for z = 0 this condition implies that 
A 2-Al, so this order is stronger than first stochastic dominance. In fact it 
requires that first stochastic dominance hold when conditioning on any increas- 
ing set.9 This is weaker than likelihood ratio ordering, which requires stochastic 
dominance when conditioning on any borel set.10 We will say that T is 
monotone in the mcd order if TAu2 >mcd Tlt1 whenever 2 >mcd Ali 

PROPOSITION 4: Assume that T is monotone in the mcd order and that 
Tv >mcd V. Then t ,mcd iU for all t. 

PROOF: For any measure ,u and z E [0,1], it is easy to check that HAu >bmcd A' 
and in particular Hxv >mcd V for the exit point x. Letting z = x, by the 
monotonicity of T, iu = T o Hxv = T(Hxv) >mcd Tv >bmcd V. It is easy to check 
that the mcd order is transitive, so Al >mcd v. Now suppose that 7t+l >mcd At 

8For example, consider the case where ,t1({O)) = 0.9, A1({1)) = 0.1, A2({?.5)) = 0.8, and A2({1)) = 
0.2. Then for x E (0,0.5), HA 1 has all its mass at (1) and thus HA1 >- H2 = A2. Similar examples 
can obviously be constructed with continuous distributions. 

9This ordering belongs to the class of uniform conditional stochastic orderings (UCSO) as 
defined in Whitt (1980). 

10An interesting extension to the multidimensional case is developed in Pakes and Ericson (1990) 
under a similar set of assumptions but involving likelihood ratio ordering. 
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Since T is monotone in the mcd order, At+2 = THxjlt+l >mcd THxAt = Pt+ 19 
where the inequality follows from the definition of mcd order for z = x. Q.E.D. 

COROLLARY: Under the hypotheses of this theorem, the distribution of firms' 
shocks is increasing in the age of the cohort, and so is the integral of any 
increasing function. In particular, the rate of survival will be higher for older firms 
and so will average size, profits and value of firms. 

This corollary implies that hazard rates will be lower for older firms. It is also 
true-almost by definition-that hazard rates in a given period will be lower for 
larger firms. A stronger result can be proved for T monotone in the mcd order. 
For a given exit rule x, let At(p) denote the probability that a firm with current 
shock 'P will still be in the industry after t periods and let At( Ip) denote its 
conditional distribution. 

PROPOSITION 5: Assume T is monotone in the mcd order. If 9p2 > 01 then 

AA(p2) > A,(p1) and ,(- 'P2) >mcd ( IkPd). 

PROOF: Same argument as in the proof of Proposition 4. 

This Proposition implies that larger firms are longer lived on average and will 
tend to remain larger before they exit. 

We derived implications for the size of firms and hazard rates. Other 
characteristics of firm growth depend on more specific features of the stochastic 
process for shocks and the production function. Empirical studies show some 
regression to the mean in size but higher persistence for larger and also for 
older firms (see Evans (1987), Dunne, Roberts, and Samuelson (1989a), and 
Leonard (1987)). Our model is consistent with the first two observations for 
appropriately chosen F. But since size is a sufficient statistic for '0, age has no 
extra predictive role. However age effects can be introduced in the model at no 
analytical cost by allowing production to be affected also by a purely temporary 
shock Et. Though production decisions and size will now depend on the two 
shocks, exit decisions will still depend only on fPt. The implications of this 
extension are not studied here. 

Comparative Statics 

This sections analyzes the effect that changes in some of the parameters of 
the industry have on the equilibrium. For this purpose it is necessary to assume 
that there exists a unique stationary equilibrium with entry and exit, e.g. that 
Assumptions A.1-A.5 and U.1 or U.2 are satisfied. 

An increase in the cost of entry shifts curve M2 downwards: to match the 
higher entry cost discounted profits need to be higher. Since curve M1 is 
increasing, this implies that the equilibrium x* decreases and M* too (see 
Figure 1). What happens to the rate of turnover, M*/,u*(S)? Equations (13) 
and (14) imply that ,u*(S) = M* Et=OAt, where At is the probability that a firm is 
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in the industry t periods after entry. In consequence, the rate of turnover 
equals (EtoAkt)-'. Since At is decreasing in x*, higher cost of entry leads to a 
lower turnover rate. 

The lower value of x* implies less selection and higher expected lifetime of 
firms. The cost of entry acts as a barrier to entry, hence higher costs of entry 
protect the incumbent firms. The higher cost of entry reduces the mass of 
entrants and the rate of entry. This is consistent with the evidence reported by 
Orr (1974) for the Canadian industry. Also higher costs of entry imply higher 
profits for large firms but not necessarily for small ones; this certainly would be 
the case for highly persistent processes where profits of exiting firms would be 
approximately zero regardless of the cost of entry. Notice also that for any fixed 
mass of the largest firms, the market share will be higher in the high entry cost 
case. These two observations imply that, as reported by Demsetz (1973), more 
concentrated industries could show higher profits for large firms and not for 
small ones. 

The effect on size distribution is not obvious. The increase in Ce has a price 
effect and a selection effect. Consider the case where input prices are fixed. 
Output price increases with ce leading to higher employment and output for 
each 'p. But since x* decreases, the fraction of firms with lower shocks (and 
thus lower output and employment) increases. The strength of each of these 
effects depends on properties of the stochastic process for shocks and the 
production function. 

A related question is the effect changes in the distribution of entrants have on 
the stationary equilibrium. For example, suppose the distribution of entrants 
stochastically decreases. In contrast to the previous case, there is a direct and 
indirect effect: at the same market prices the stochastically lower distribution of 
entrants reduces their expected profits. But for fixed entry and exit rules the 
invariant distribution stochastically decreases, with a positive effect on expected 
profits of entrants. If the net effect were negative, then while curve M1 in 
Figure 1 would shift upwards, curve M2 would shift downwards, resulting in 
lower values for M* and x*. As in the previous case, this would imply lower 
rates of turnover. This occurs under assumptions U.1 or U.2, since the increase 
in profits for some states-necessary to compensate for the lower v-implies 
that profits will increase for all states, which in turn leads to a reduction in x*. 

What effect does a mean preserving spread for the state of entering firms 
have on the stationary equilibrium? To answer this question, assume the profit 
function is strictly convex in 'p and that F preserves convexity, i.e. Jf(y)F(dy ix) 
is a convex function of x whenever f is convex." Then, by standard dynamic 
programming arguments, the value function is also strictly convex in 'p. So 
without changes in equilibrium prices expected profits for entrants would 
increase. Again under assumption U.1 or U.2 this implies that the equilibrium 
value for x* increases, and so does the rate of turnover. 

For example, this condition holds for linear AR1 processes where y = px + E, since 
ff(y)F(dy Ix) = ff(px + E)WP(de) is convex in x for convex f. 
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The effect of higher demand on the stationary equilibrium depends on 
whether the input supply price to the industry is fixed or increasing. In the first 
case, the long run supply curve of the industry is horizontal, so higher demand 
only affects the mass of entrants.12 In this case entry increases with the size of 
the industry as also reported by Orr (1974). When input supply prices are 
increasing to the industry changes in aggregate demand will have price effects. 
It is easy to show that the real wage increases together with the increase of 
aggregate demand. 

What happens to turnover? When the profit function is separable in the state 
of the firm and market prices, as defined in assumption U.2 the zero profit 
condition for entry implies that profits must remain the same for all states. In 
this case changes in aggregate demand are neutral on all life cycle properties 
and on the rate of turnover in the industry, causing only changes in the total 
number of firms and the market price for the good in the industry. Note also 
that due to the presence of higher real wages, under these hypotheses higher 
demand implies smaller firms. This in turn implies that the market share of a 
given mass m of largest firms decreases.13 The same qualitative results dis- 
cussed in this paragraph are obtained for an increase in an exogenously given 
wage rate. 

Given the connection between the level of fixed costs and the degree of 
economies of scale, it is interesting to analyze the effect of higher fixed costs. 
This shifts both the M1 and M2 curves downward, suggesting the possibility of 
an ambiguous answer. The following proposition provides a condition under 
which the higher fixed costs lead to stochastically larger distribution of sizes. An 
example is then presented that indicates the possibility of a change in the 
opposite direction. 

PROPOSITION 6: Under assumption U.2 an increase in the fixed cost, all other 
things equal, leads to a stationary equilibrium with higher x*. 

PROOF: Let v(~p, u) = v(p, ,u)/Cf. Rewriting equation (9) for the stationary 
case and using U.2 the following is obtained: 

h h( f)g ( p e (U) we (,u) 
Cf 

- 1 + max (0,6 Bv'(9', /l)F(d(P 'JP)} 

12 This is connected to the fact that cost of entry is independent of the number of firms and that 
all potential entrants are identical. If either of these assumptions were changed, e.g. if cost of entry 
is an increasing function of the number of entrants, then the equilibrium price of the output would 
increase while the exit point would decrease, leading to higher expected life of firms and lower rate 
of turnover. 

13 If concentration is measured instead by the Gini coefficient, the effect of demand changes on 
concentration depend on the relative values of the employment price elasticity of different firms. In 
particular, if -f21(VP, n)/f22(Vp, n) * n is increasing (decreasing) in n for all ('p, n), the Gini coefficient 
will decrease (increase). 
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Consider two industries, one with a lower fixed cost than the other, denoted 
respectively by subscripts 1 and 2. Let x1 and x2 be the corresponding 
equilibrium exit points and Al and A2 the corresponding distributions. If 
x2 <x1, then 

fv(P, A2)F(dp lxl) > fV(9, y2)F(do Jx2) 

= 0 = fv(qp,ul)F(d pIxI). 

Using standard dynamic programming arguments it is easy to see that this can 
only happen when 

g(p'(,u )' w'(,uM) g(P (AU2)9W (A2)) 

Cf 1 Cf2 

which in turn implies that d(, ,uq) 0 v(, AO2). But since fixed costs are higher in 
industry 2, V(P, 9A) < v(P, /U2) which in turn implies higher expected discounted 
profits for entrants in industry 2, contradicting condition (iii) of the definition of 
equilibrium. Hence X4* <4X* Q.E.D. 

The following example shows that even under assumption U.1 the above 
result need not hold. 

EXAMPLE: Let v(}) = .9 and v({1})= .1; P = I; 13 = 0 and ce = 0.1. The 
production function is fGp, n) = 'p ln(max{1, n}). With these assumptions the 
following entry and exit condition are obtained: 

(entry) 0.1 * v(1, p)-c = C 0 

(exit) Vr(x*, p) = 0. 

Numerical results for different levels of fixed cost are reported in the following 
table. 
Equilibrium values Cf =O 1 Cf = 0 - 5 Cf = 1 0 

p 4.3 6.7 9.1 
x* 6.52 4.76 3.95 
q(x*) 6.75 5.51 5.04 
n(x*) 2.82 3.18 3.59 
q(x*)/n(x*) 2.40 1.73 1.41 

As fixed cost increases, the size-measured by output-of the marginal firm 
decreases, and so does its productivity. So this example shows that higher 
economies of scale can, in theory, increase the survival rates for smaller firms! 
This suggests some caution in connecting cross industry differences in the 
survival rates for a given size class to the degree of economies of scale. 

Though the environment used for this example is rather degenerate, using 
continuity arguments it is easy to see that this result is not exceptional. The key 
feature needed to obtain this behavior is that increases in Cf require very large 
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increases in p for the entry condition to be satisfied, which outweigh the ones 
needed to maintain the exit point. Loosely speaking, this requires a technology 
where high fp leads to high profits but not high elasticity of profits. 

Profits and Value of Firms 

We now study the effect that selection resulting from exit has on average 
profits and value of firms. Incumbent firms have the option of staying in the 
industry without the need of paying a new entry cost. Because of this option 
value it is likely that 7r(x*, ,*) < 0 and thus the support of the distribution of 
profits will contain some negative values. The following Proposition shows that 
in spite of this, a positive lower bound can be obtained for average industry 
profits. Let p = M*/,u*(S), the rate of turnover. 

PROPOSITION 7: At the stationary equilibrium, -r(.f*) -r((P ,u*),u*(dqp) > 

Pce. 

PROOF: Let 
V, 

= fv(q, ,u*)A4,-(dq) and Ht = f 7r(, ,*)At,u-(d). It follows 
that V, = it + 1 VK+ 1for all t, and since VI/A, is the average expected value of a 
surviving firm, VK > 0 for all t. In consequence, VK < Ht + VT+1 and inductively 
noting that At - 0 implies Vt - 0, Vt < Y2,=tHI. In particular, Ce = ve(,i*) = V0 

< _t=oHt = EtoAtTr(t*), where the last equality follows from the fact that 
e = Et=0AitIt/Et=At. Since p = (E~t=0A t), dividing through by ESUOAt the 
inequality is obtained. Q.E.D. 

We now turn to the average value of firms, v(,u) = Jv(p,,u),u(dqp). With no 
entry and exit (,u) = Tr(,u)/(1 -,f), since the total value of the industry 
portfolio is the discounted flow of its profits. A gap appears when there is entry 
and exit since to support this constant flow of profits entry costs must be borne. 
The following Proposition introduces this correction. 

PROPOSITION 8: The average value of firms T(W*) = r(.u*)- I8PCe/(l -183) > 

Pce. 

PROOF: 3(,.e*)EAt = _t=oVt = Et=OHt + Et=lVt = Et=0Ht + 1Et=OVt - I3Ce 
Dividing through by EAt the equality is obtained. The inequality follows from 
the bound given in Proposition 7. Q.E.D. 

Note that the formula given in Proposition 8 offers an indirect way of 
measuring implicit entry (sunk) costs to different industries. Also since p is 
equal to the inverse of the expected lifetime of a firm, the formula implies that 
the gap between the average value of firms and the discounted stream of 
average profits will be smaller the higher the average age of firms. Of course in 
the limit, when p = 0, this gap disappears. 
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A stronger result can be obtained under the assumptions of Proposition 3. A 
consequence of this Proposition is that ,u* a v, which in particular implies 
iXL*) > ce. In'the absence of other sources of investment ce measures the 
capital of a firm, so this inequality also implies that for the industry the average 
value for Tobin's q ratio exceeds one. Comparative statics results on average 
industry q ratios are developed in Hopenhayn (1992). 

Do industries with higher fixed cost or entry costs have higher average profits 
and value? We now analyze this question. 

Increase in entry cost. This has two effects: a value effect, given by the 
increase in profits, and a selection effect given by the reduction in x*. The first 
effect is positive but the second one negative, so no general conclusion can be 
obtained. If the density of firms near the exit point is very small, the first effect 
will dominate and the average value and profits increase with ce. 

Increase in fixed cost. This also has value and selection effects. By Proposition 
6, under assumption U.2 the latter effect is positive. We now show that if a 
regularity condition holds the value effect is also positive. 

It is useful to write Ve as the weighted sum of profits: 
00 

(15) Ve( /) E tA t[0p e(U)We(U)] d(p) 
t=0 

Similarly one can express T by14 

00 00 

(16) v(U) = E At(j -8t) [-,pe(,U),We(,U)]-t(d 13)1 ) E AE . 
t=O t=O 

As the fixed cost increases, the profit function changes, making profits lower for 
each pair (p, u). To maintain the equality in (15) u must change to reestablish 
profitability. Is this compensating effect for entrants enough to compensate the 
average firm too? Both (15) and (16) give weighted averages of profits of firms of 
different ages. But because of discounting, (16) gives more weight to older firms. 
Under the assumptions of Proposition 4 these are also firms with higher p's. So 
if the price effect is higher for firms with higher shocks T will increase. Since 
1T2((p, p, w) = q('p, p, w) which is increasing in (p, if w is constant the price effect 
will indeed be higher for firms with higher shocks. The following Proposition is 
proved in Hopenhayn (1992). 

PROPOSITION 9: Under the assumptions of Proposition 4 and if U.1 holds, an 
increase in cf leads to an increase in T. 

Similar results are obtained for average industry profits using exactly the same 
argument, since these are proportional to the right side of equation (15) but 
without discounting. 

14 This formula is developed in Hopenhayn (1992). 
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6. FINAL REMARKS 

This paper has developed the stationary equilibrium analysis of an industry 
equilibrium model. Entry and exit are part of the limiting behavior of the 
industry and not only part of the adjustment to a steady state, as occurs in much 
of the previous literature. The concept of a stationary equilibrium thus extends 
standard long run industry equilibrium theory to account for entry, exit, and 
firm dynamics. 

The model developed here has abstracted from some interesting features. In 
particular, the only dynamic decision faced by firms-as in Jovanovic-is the 
exit decision, a stopping time problem, and the stochastic structure is a fairly 
simple one. But the idea of a stationary equilibrium that we develop extends 
easily to much more general setups. In particular, investment decisions can be 
easily introduced, either expanding the state vector in the dynamic problem 
solved by firms or allowing these to affect the conditional distribution for 
shocks, as in Ericson and Pakes. We conjecture that many results developed 
here will extend and even if the comparative statics analysis is not as simple as it 
is here, at the very least the numerical computation will remain a very simple 
one. 

We have emphasized the importance of the process of resource reallocation 
that takes place through firm and job turnover. Many countries have policies, 
such as firing costs, that affect this process. Stationary equilibrium analysis can 
provide a useful tool to study the impact of such policies. As an example, a 
version of the model developed here is used in Hopenhayn and Rogerson (1991) 
as the productive sector of a general equilibrium model to study the effect of 
labor firing costs on job turnover, productivity, and welfare. The steady state 
analysis provides a means of evaluating long run impact of these policies. 
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APPENDIX 

1. Preliminaries 

Let M be the set of positive bounded borel measures on S = [0,1] endowed with the weak* 
topology. For a linear operator T: M -* M we will denote by IITII its norm in the strong topology. 
Unless otherwise specified, continuity of functions with more than one argument will be in the 
product topology. Orderings: Let the order a on M be defined by /L2 a 1 iff Jfdp 2 > Jfdp 1 for 
every nondecreasing and bounded borel measurable function f. When /L2 and t1 are probability 
measures this coincides with standard first order dominance. This defines a partial order with closed 
graph (see Kamae and Krengel (1978)). When the inequality is strict for all strictly increasing f we 
will say that /2 >- /. This order is stronger than a but weaker than the canonical order on M. All 
statements of (strict) monotonicity involving measures will refer to the order (>-) a. 

2. Lemmas and Proofs 

LEMMA 1: Let Z be a metric space and h: S x Z -- R; a continuous function. Assume , ,-* and 

Zn z, where zn and z are in Z. Then fh(sp, zn)n(d p) -- fh(sp, z),u(d p). 
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PROOF: Follows from Theorem 5.5 in Billingsley by letting hn = h(*, zn), using joint continuity of 
h and the fact that since t-n -*, hn E Y c R, a bounded set, for all n. Q.E.D. 

LEMMA 2: Qs and Nd are continuous functions. 

PROOF: Follows immediately from Lemma 1 and the continuity of function q and n. Q.E.D. 

LEMMA 3: Functions pe and we are well defined and continuous. 

PROOF: For given ,u and using the arguments for the proof of Theorem 1 the allocations 
Q(/L, pe(j) we(,L)) and N(M, pe(A), we(/L)) maximize consumer surplus. Since D is strictly decreas- 
ing, also by the argument used in the proof of Theorem 1 the aggregates Q and N are unique, and 
so are the corresponding equilibrium prices. To establish continuity note that pe(u) and we(,) are 
the minimizers of lP - D(Qs(tL, p, w)) I + I w - W(Nd(u, p, w)) 1, so by the theorem of the maximum 
and using Lemma 2 pe and we are continuous. Q.E.D. 

PROOF OF PROPOSITION 2: Continuity follows from Assumption A.2(b) and Lemma 3. Since 
pe(L) > 0, ir- is strictly increasing in 'p also by Assumption A.2(b). 

We now establish that iv is decreasing in ,u. Let /L2 >- /i. Let pj and wj, j = 1,2 denote the 
respective equilibrium prices. Suppose by way of contradiction that p2 <p1. Then w2> w1 for 
otherwise q('p, P2, W2) > q(Gp, p1, w1) and since q is strictly increasing in 'p, fq(Gp, P2, w2)*2(dsp) > 
Jq(Gp, p1, w1)L1(d(p) and thus P2 <p1. But w2 > w1 implies that N2 > N1 and since /I2 >- ,1, this is 
not consistent with a decrease in aggregate output. In consequence P2 <P1- It also follows easily 
that W2/P2> w1/p1 and thus, letting A =p2/p1, ir(-p, P2, W2) < ii(Gp, AP1, Aw) = A7r(Gp, P1, wi) < 
7r((,pl, P W1). Q.E.D. 

LEMMA 4: For any x e (0, 1] the operator (I - P1) has an inverse. 

PROOF: Let pfn denote the composition of Px n times with itself and P? = I. Assumption A.4 
implies that 11P1n < 1 and thus (I- Pn) = Et 0Pn', as follows from Kolmogorov and Fomin 
(1970, Theorem 4, pg. 231). Since IIP nII is nonincreasing in n, this also implies that (I - Px)1 exists 
and satisfies equation (13). Q.E.D. 

LEMMA 5: Function m is jointly continuous, decreasing in x, and strictly increasing in M. 

PROOF: We prove continuity in the strong topology. Since m(x, M) = M(I - PI _V it obviously 
suffices to prove continuity in x for any M> 0. Let x -* x e (0,1]. Let B(x, E) be an epsilon 
neighborhood of x in (0,1]. Let P(p, A) be the transition function corresponding to F. For 
x EB(x, E) IPxnv(A) -Pv(A)I < fB(X,,)P((p, A)v(d(p) < v(B(x, E)) for any borel set A. By As- 
sumption A.5 v(B(x, ?))O as ?-O, So PX V P,v in the norm topology. We now prove the same 
for P,n. Suppose that P'-v is also continuous in x and let ,u n For any borel set A and 
Xn e B(x, E), 

I v>(A) v Pfr(A)I f P(sp, A)An(d(p) - f P((p, A)li(d(p) 

+ f P(p, A)Aln(d(p )-f P((p, A)An(d(p) 
'>x q,x 

6 pi(B(x, ?)) + 21ILn - Al 

which converges to ,u(B(x, ?)) as n -* oo. Assumptions A.3(a) and A.5 imply that ,u is nonatomic so 
as E -* 0, ,u(B(x, ?)) 0 too, proving strong continuity of fit- 'v in x. For any finite T, EP'v is also 
strongly continuous in x and since x > 0, by Assumption A.4 the same is true for T = oo, so m is 
continuous in x on (0,1]. 
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For x E (0, 1] and M > 0, m is strictly increasing in M and nonincreasing in x in the canonical 
order. Hence m is strictly increasing in M and weakly decreasing in x. Q.E.D. 

LEMMA 6: Function M1: (0, 1] - R+ is well defined, continuous, and strictly increasing. 

PROOF: For fixed x E (0, 1] and M > 0, let H(qp, x, M) Jv[ p', m(x, M)]F(d(p' l p). H is continu- 
ous by Lemma 5, Proposition 3, Assumption A.3.a, and Lemma 1. Also it is easy to check that H is 
strictly increasing in (p, nondecreasing in x, and strictly decreasing in M. Furthermore, as M -* 
output price must decrease to zero, for otherwise aggregate output Qs must remain bounded and so 
must employment. But in that case w/p will be bounded above and thus q(Gp, p, w) > q > 0 for all q', 
which in turn implies that Qs will grow without bound. In consequence, as M -* oo, irr((p, ) 
decreases to -C f for all qp so H(Gp, x, M) decreases to -I3cf. On the other hand, as M IO so does 
m(x, M) so by Assumption A.2(c) and letting ,u = m(x, M), dr[O, pe(pu), we(,l)] become positive for 
small M and so does H(Gp, x, M). Thus, for each x > 0 and qp there exists a unique M such that 
H(p, x, M) = 0. Ml(x) is the unique M for which H(x, x, M) = 0. Since H(x, x, M) is strictly 
increasing in x and strictly decreasing in M it follows that M, is strictly increasing. Continuity of 
M1 is immediate from the continuity of H. Q.E.D. 

LEMMA 7: Assume Ve(O) > Ce. Then M2 is well defined, continuous, and nondecreasing. 

PROOF: As M , X ve(m(x, M)) -* 0 and as M , 0 ve(m(x, ,u)) Ve(O) > ce. Since ve(m(x,*)) 
is continuous and strictly decreasing, M2(x) is well defined. Furthermore since M2(x) is the 
minimizer of I V e(m(x, M)) - Ce I which is a continuous function, it is continuous. From the 
monotonicity properties of m it easily follows that M2 is nondecreasing. Q.E.D. 

THEOREM 2: There exists a stationary competitive equilibrium for the industry. 

PROOF: Without loss of generality assume Ve(O)> Ce, for otherwise an empty industry is an 
equilibrium. Thus functions M1 and M2 are well defined. Looking at Figure 1 there are two cases: 
(i) there exists some x E (0, 1] such that M1(x) < M2(x), so there is an interior stationary equilib- 
rium; (ii) M1(x) > M2(x) for all x E (0, 1]. In this case ve(m(x, M1(x)) < ce for all x. As xn 
decreases to 0, let gun = m(xn, M1(xn)) and bn = lUn(S). Note that since v(Gp, * ) is decreasing, bn 
must be a decreasing sequence. It converges to some b > 0 for otherwise ve(tLn) > Ce for large n. 
Also {t,u/b,} is a sequence of probability measures which is easily seen to be decreasing in a . By 
Proposition 1 in Hopenhayn and Prescott (1991) this sequence also converges and in consequence 
,-n ,u a nonzero measure. It is not hard to show that ,u is a fixed point for the operator defined by 
the transition function P that corresponds to the conditional cdf F.15 By continuity, Ve(/u) < Ce and 
v(0, ,) = 0 so ,u and the respective prices are an equilibrium for M = 0. Define AO by Ve(AO,I) = Ce. 

If AO < 1, then for all AO <A < 1, ve(All) < Ce and v(0, /,) > 0 and thus A,u and M = 0 also define a 
stationary equilibrium. Q.E.D. 

PROOF OF THEOREM 3: Let ,u be the measure as defined in the proof of the previous theorem. 
Let C* = Ve(/L). If Ce > C* there is obviously no equilibrium with entry and exit. If ce < c* then 
Ce < Ve(/ln) for sufficiently large n, where gun is the sequence given in the above proof. In that case 
there exists x > 0 such that Ml(x) < M2(x), so there is an equilibrium with entry and exit. Finally 
note that Ve(L)> v(0,, ) > ir(0, tX1 -_f)-l, which by Assumption A.2(c) is strictly positive, so 
c* > 0. Q.E.D. 
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