# If the network doesn't fit in the memory of one GPU (11 GB),
* [https://devtalk.nvidia.com/default/topic/743814/cuda-setup-and-installation/advice-on-single-vs-multi-gpu-system/ Advice on single vs multi-GPU system]
# Want to get two graphics cards, one for development, one (crappy or onboard card) for operating system [https://stackoverflow.com/questions/21911560/how-can-i-set-one-nvidia-graphics-card-for-display-and-other-for-computingin-li]
*[https://stackoverflow.com/questions/37732196/tensorflow-difference-between-multi-gpus-and-distributed-tensorflow Different uses of multiple GPUs]
# Intra-model parallelism: If a model has long, independent computation paths, then you can split the model across multiple GPUs and have each compute a part of it. This requires careful understanding of the model and the computational dependencies.
Cons of multiple GPUs:
*Adds a lot of complexity.
==Misc. Parts==