Changes
Jump to navigation
Jump to search
Lee,Wilde (1980) - Market Structure And Innovation A Reformulation (view source)
Revision as of 16:16, 15 November 2010
, 16:16, 15 November 2010New page: ==Reference(s)== **Lee, T. and L.L. Wilde (1980), "Market structure and innovation: A reformulation", Quarterly Journal of Economics, 94, pp. 429-436. [http://www.edegan.com/pdfs/Lee%20Wi...
==Reference(s)==
**Lee, T. and L.L. Wilde (1980), "Market structure and innovation: A reformulation", Quarterly Journal of Economics, 94, pp. 429-436. [http://www.edegan.com/pdfs/Lee%20Wilde%20(1980)%20-%20Market%20structure%20and%20innovation%20A%20reformulation.pdf (pdf)]
==Abstract==
The relationship between market structure and innovative activity has attracted a greal deal of attention from economists over the last two decades. One of the most interesting recent additions to the literature has been provided by Glenn Loury [1979]. He analyzes "a world in which ... firms compete for the constant, known, perpetual flow of rewards ... that will become available only to the first firm that introduces [some given] innovation" [Loury, 1979, p. 397]. Following Kamien and-Schwartz [1976], he assumes that individual firms face a stochastic relationship between investment in R & D and the time at which a usable innovation (a "new" technology) is produced. The interaction of firms competing to introduce the innovation is then modeled as a noncooperative game [Scherer, 1967]. Loury's major conclusions are as follows:
i. As the number of firms in the industry increases, the equilibrium level of firm investment in R & D declines.
ii. When there are initial increasing returns to scale in the R & D technology, then a zero expected profit industry equilibrium with a finite number of firms always involves "excess capacity" in the R & D technology.
iii. Given a fixed market structure, industry equilibrium will have each firm investing more in R & D than is socially optimal.
iv. When there are initial increasing returns to scale in the R & D technology, competitive entry leads to more than the socially optimal number of firms in the industry.
It turns out that conclusions (i) and (ii) are sensitive to Loury's specification of the costs of R & D. In this paper we investigate the effects of an alternative specification.
**Lee, T. and L.L. Wilde (1980), "Market structure and innovation: A reformulation", Quarterly Journal of Economics, 94, pp. 429-436. [http://www.edegan.com/pdfs/Lee%20Wilde%20(1980)%20-%20Market%20structure%20and%20innovation%20A%20reformulation.pdf (pdf)]
==Abstract==
The relationship between market structure and innovative activity has attracted a greal deal of attention from economists over the last two decades. One of the most interesting recent additions to the literature has been provided by Glenn Loury [1979]. He analyzes "a world in which ... firms compete for the constant, known, perpetual flow of rewards ... that will become available only to the first firm that introduces [some given] innovation" [Loury, 1979, p. 397]. Following Kamien and-Schwartz [1976], he assumes that individual firms face a stochastic relationship between investment in R & D and the time at which a usable innovation (a "new" technology) is produced. The interaction of firms competing to introduce the innovation is then modeled as a noncooperative game [Scherer, 1967]. Loury's major conclusions are as follows:
i. As the number of firms in the industry increases, the equilibrium level of firm investment in R & D declines.
ii. When there are initial increasing returns to scale in the R & D technology, then a zero expected profit industry equilibrium with a finite number of firms always involves "excess capacity" in the R & D technology.
iii. Given a fixed market structure, industry equilibrium will have each firm investing more in R & D than is socially optimal.
iv. When there are initial increasing returns to scale in the R & D technology, competitive entry leads to more than the socially optimal number of firms in the industry.
It turns out that conclusions (i) and (ii) are sensitive to Loury's specification of the costs of R & D. In this paper we investigate the effects of an alternative specification.