Difference between revisions of "Parallelize msmf corr coeff.m"

From edegan.com
Jump to navigation Jump to search
Line 67: Line 67:
 
     end
 
     end
  
However using Gurobi actually did not help with the code performance. This is possibly due to the cost to create models for each Gurobi object. Gurobi is indeed the best commercial solver in the market, but it should be used for solving large LPs (hundreds of thousands of constraints). We reversed back to using Matlab's native linprog:
+
However using Gurobi actually did not help with the code performance. This is possibly due to the cost to create models for each Gurobi object. Gurobi is indeed the best commercial solver in the market, but it should be used for solving large LPs (hundreds of thousands of constraints), where as our Lp has only a few thousands constraints. We reversed back to using Matlab's native linprog:
     % Parallelly solve LPs with Matlab's native linprog
+
     % Solve LPs in parallel with Matlab's native linprog
 
     parfor r = 1 : R
 
     parfor r = 1 : R
 
         options = optimset('Display', 'off');
 
         options = optimset('Display', 'off');
 
         [asgr(:, r), ~, eflag(r)] = linprog(f(:, r), [B;-B], [constrB; constrM], [], [], zeros(L, 1), ones(L,1),options);
 
         [asgr(:, r), ~, eflag(r)] = linprog(f(:, r), [B;-B], [constrB; constrM], [], [], zeros(L, 1), ones(L,1),options);
 
     end
 
     end

Revision as of 16:19, 20 July 2018


McNair Project
Parallelize msmf corr coeff.m
Project logo 02.png
Project Information
Project Title Parallelize msmf corr coeff.m
Owner Wei Wu
Start Date 2018-07-09
Deadline
Keywords Matlab, parallel computing, CPU
Primary Billing
Notes
Has project status Active
Is dependent on Estimating Unobserved Complementarities between Entrepreneurs and Venture Capitalists Matlab Code
Copyright © 2016 edegan.com. All Rights Reserved.


This page documents all changes that Wei made to the Matlab code for Matching Entrepreneurs to VC. It also explains the decisions Wei made, and analyzes where further improvement might be achieved in the future.

Changes made to the code

To speed up the valuation of the objective function used by ga, Wei parallelized a couple of lines in msmf_corr_coeff.m.

Around line 80 of msmf_corr_coeff

Original code:

for m = 1 : M
   cholA = chol(exchsig(N1(m)-1, N2(m)-1, th));
   epsim12 = zeros(N1(m), N2(m), R);
   epsimR12 = reshape(mtimesx(repmat(cholA', [1 1 R]), reshape(epsimR(psa(m)+1: psa(m)+(N1(m)-1)*(N2(m)-1), :, :), [(N1(m)-1)*(N2(m)-1) 1 R])), [N1(m)-1 N2(m)-1 R]);
   epsim12(2:end, 2:end, :) = epsimR12;          
   f(psa(m)+1 : psa(m+1), :) = f(psa(m)+1 : psa(m+1), :) - reshape(epsim12, [N1(m)*N2(m) R])                   
end

For R=200, monte_M = 70 (hence large M), and mktsize = 30, each call to msmf_corr_coeff takes ~140 seconds. Computing epsimR12 is taking more than 50% time of msmf_corr_coeff.m. Each computation of epsimR12 is taking no more than 2 seconds, but for a large M it will take a long time in total. To improve this, we use a parfor to paralellize this part.
EpsimR12 new.png
New code:

epsim_cell = cell(M,1);  
parfor m = 1 : M
   cholA = chol(exchsig(N1(m)-1, N2(m)-1, th));
   epsim12 = zeros(N1(m), N2(m), R);
   epsimR12 = reshape(mtimesx(repmat(cholA', [1 1 R]), reshape(epsimR(psa(m)+1 : psa(m)+(N1(m)-1)*(N2(m)-1), :, :), [(N1(m)-1)*(N2(m)-1) 1 R])), [N1(m)-1 N2(m)-1 R]);
   epsim12(2:end, 2:end, :) = epsimR12;
   epsim_cell{m} = reshape(epsim12, [N1(m)*N2(m) R]);                           
end   
for m = 1 : M
    f(psa(m)+1 : psa(m+1), :) = f(psa(m)+1 : psa(m+1), :) - epsim_cell{m};
end

To avoid data-racing, in each iteration m, we stored epsim12 into epsim_cell, and compute f using another for loop. Using parfor on a 12-cores machine gives a four time speed up for computing msmf_corr_coeff.m. Note that the actual speedup depends how many cores you are using. For the same R, monte_M, and mktsize, it now takes ~ 35 seconds to finish one call to msmf_corr_coeff.

Msmf corr coeff speedup.png

Around line 120 of msmf_corr_coeff solving LP problems

For a large R, e.g. R = 200, solve 200 linear programming problems in parallel should be beneficial, especially when the each LP itself is easy to solve (takes less than 0.1 seconds each). Initially we managed to use gurobi inside a parfor:

   % Gurobi inisde parfor. For large R (>100). By Wei.
    model.rhs = [full(constrB); full(constrM)];
    model.A = [sparse(B);sparse(-B)];
    model.ub =  ones(L,1);
    model.lb =  zeros(L,1);
    model.sense = '<';
    for r = 1 : R
        % solve_LP is a function wrapper. It calls gurobi to solve a single LP. 
        asgr(:,r) = solve_LP(r,f,model);
    end
   % The function wrapper to use Gurobi
    function X = solve_LP(r,f,model)
       model.obj = f(:,r);    
       parameters.outputflag = 0;
       result = gurobi(model, parameters);
       X = result.x;
    end

However using Gurobi actually did not help with the code performance. This is possibly due to the cost to create models for each Gurobi object. Gurobi is indeed the best commercial solver in the market, but it should be used for solving large LPs (hundreds of thousands of constraints), where as our Lp has only a few thousands constraints. We reversed back to using Matlab's native linprog:

   % Solve LPs in parallel with Matlab's native linprog
    parfor r = 1 : R
        options = optimset('Display', 'off');
        [asgr(:, r), ~, eflag(r)] = linprog(f(:, r), [B;-B], [constrB; constrM], [], [], zeros(L, 1), ones(L,1),options);
    end