Difference between revisions of "Mapping on R"

From edegan.com
Jump to navigation Jump to search
Line 30: Line 30:
 
*Use map bounds and mouse events to drive Shiny logic
 
*Use map bounds and mouse events to drive Shiny logic
  
 +
*Sample Code:
 +
  SBDE <- read.csv("SBDE.csv") #Import the CSV file with your data set
 +
  library(leaflet) #Use the leaflet library
 +
  #data(SBDE)
 +
  m <- leaflet(data = SBDE) %>% #Define your map with the data you specified earlier
 +
    addTiles() %>% # Add default OpenStreetMap map tiles. Make sure to use the %>% symbol!
 +
    addMarkers(~longitude, ~latitude, popup = ~as.character(link)) %>% #Add points on your map
 +
    addLegend("bottomright", colors= "#1878cd", labels="Resources", title="Houston Small Biz Guide") #Add a legend
 +
  m # Print map
  
  

Revision as of 15:10, 8 November 2016


Interactive Maps

Mapping with Leaflet

Interactive map on Leaflet
Interactive map with Markers

Leaflet is one of the most popular open-source JavaScript libraries for interactive maps. This R package makes it easy to integrate and control Leaflet maps in R.

Introduction: https://rstudio.github.io/leaflet/
Markers: https://rstudio.github.io/leaflet/markers.html
Github: https://github.com/rstudio/leaflet

Features

  • Interactive panning/zooming
  • Compose maps using arbitrary combinations of:
  *Map tiles
  *Markers
  *Polygons
  *Lines
  *Popups
  *GeoJSON
  • Create maps right from the R console or RStudio
  • Embed maps in knitr/R Markdown documents and Shiny apps
  • Easily render Spatial objects from the sp package, or data frames with latitude/longitude columns
  • Use map bounds and mouse events to drive Shiny logic
  • Sample Code:
  SBDE <- read.csv("SBDE.csv") #Import the CSV file with your data set
  library(leaflet) #Use the leaflet library
  #data(SBDE)
  m <- leaflet(data = SBDE) %>% #Define your map with the data you specified earlier
    addTiles() %>% # Add default OpenStreetMap map tiles. Make sure to use the %>% symbol!
    addMarkers(~longitude, ~latitude, popup = ~as.character(link)) %>% #Add points on your map
    addLegend("bottomright", colors= "#1878cd", labels="Resources", title="Houston Small Biz Guide") #Add a legend
  m # Print map



Other R Packages

Helpful links: http://www.r-bloggers.com/interactive-maps-for-the-web-in-r/
To find HEX codes for RGB colors: http://www.javascripter.net/faq/rgbtohex.htm

googleVis - forms a tasteful interactive map that pop up bubbles of information for each component.

Example Code:

data.poly <- as.data.frame(polygons) data.poly <- data.poly[,c(5,12)] names(data.poly) <- c("Country Name","CO2 emissions (metric tons per capita)")

map <- gvisGeoMap(data=data.poly, locationvar = "Country Name", numvar='CO2 emissions (metric tons per capita)',options=list(width='800px',heigth='500px',colors="['0x0000ff', '0xff0000']")) plot(map)

print(map,file="Map.html")

plotGoogleMaps - This is another great package that harness the power of Google’s APIs to create intuitive and fully interactive web maps. The difference between this and the previous package is that here we are going to create interactive maps using the Google Maps API, which is basically the one you use when you look up a place on Google Maps. Again this API uses javascript to create maps and overlays, such as markers and polygons. However, with this package we can use very simple R code and create stunning HTML pages that we can just upload to our websites and share with friends and colleagues.

Example Code:

library(plotGoogleMaps) polygons.plot <- polygons[,c("CO2","GDP.capita","NAME")] polygons.plot <- polygons.plot[polygons.plot$NAME!="Antarctica",] names(polygons.plot) <- c("CO2 emissions (metric tons per capita)","GDP per capita (current US$)","Country Name")

#Full Page Map

map <- plotGoogleMaps(polygons.plot,zoom=4,fitBounds=F,filename="Map_GoogleMaps.html",layerName="Economic Data")

#To add this to an existing HTML page

map <- plotGoogleMaps(polygons.plot,zoom=2,fitBounds=F,filename="Map_GoogleMaps_small.html",layerName="Economic Data",map="GoogleMap",mapCanvas="Map",map.width="800px",map.height="600px",control.width="200px",control.height="600px")

Quick Guide to Leaflet Alternatives

  • Make sure you have downloaded the RgoogleMaps package.
    • code: library(Rgooglemaps)
  • Create a base map
    • find geocode for center of desired map, adjust zoom as needed
    • example code (for map of North America): newmap <- GetMap(center = c(39, -95), zoom = 3, destfile = "NorthAmerica.png")
  • Transform addresses into geocode via http://www.geocodezip.com/v3_example_geo2.asp?addr1=United%20States%20of%20America&geocode=1
  • Plot map, adjust variables
    • example code: PlotOnStaticMap(newmap, lat = c(30.268606, 41.888519), lon = c(-97.740467, -87.63548), pch = 20, col = "red")
    • lat=latitude; lon=longitude, pch = point style, color="color"

Example Code: Chicago MSA w/ color by Industry

library(RgoogleMaps) library(ggplot2) library(colorspace) library(RColorBrewer)

merged.data<- merge(Chicago.Adresses.for.geocode.v2, Chicago.Addresses.w.Industries, by="Name")

newmap <- GetMap(center = c(41.92,-87.78), zoom = 11,GRAY = TRUE, destfile = "chicago_test.png")

col.list <- c("#EB6D2E","#EB6D2E", "#EB6D2E", "#00B2A9", "#516B66", "#00B2A9") palette(col.list)

PlotOnStaticMap(newmap, lat=c(Chicago.Adresses.for.geocode.v2$Latitude),lon=c(Chicago.Adresses.for.geocode.v2$Longitude), pch=20, col=c(Chicago.Addresses.w.Industries$Industry))