Changes

Jump to navigation Jump to search
no edit summary
provided that <math>r\,</math> is less than 1 (which is needed for convergence).
 
Then one can solve for <math>\beta_A^*\,</math>, the threshold <math>\beta\,</math> if <math>A\,</math> defects as:
 
:<math>\underbrace{\sum_{t=0}^{\infty} \delta^t \beta}_{\mbox{Cooperate}} \ge \underbrace{1 + \sum_{t=1}^{\infty} \delta^t \gamma}_{\mbox{Defect and prob(elected)}=\gamma}\,</math>
 
:<math>\therefore \beta \ge 1-\delta + \delta \gamma\,</math>
 
 
And likewise for <math>\beta_B^*\,</math>:
 
:<math>\beta \ge 1 - \delta \gamma\,</math>
 
 
Then cooperation can be sustained iff:
:<math>B \ge max( \beta_A^*, \beta_B^*)\,</math>.
Anonymous user

Navigation menu