Changes
Jump to navigation
Jump to search
Baye Morgan Scholten (2006) - Information Search and Price Dispersion (view source)
Revision as of 16:45, 11 April 2010
, 16:45, 11 April 2010→Information Clearinghouses
<center><math>F(p) = \frac{1}{\alpha} \left ( 1 - \left ( \frac{\frac{n-1}{n-1}\phi + (v-p)L}{(p-m)S} \right )^{\frac{1}{n-1}} \right )\,</math> on <math>[p_0,v]\,</math></center>
where:
<center><math>F(p) = \frac{1}{\alpha} \left ( 1 - \left ( \frac{\frac{n-1}{n-1}\phi + (v-p)L}{(p-m)S} \right )^{\frac{1}{n-1}} \right )\,</math> on <math>[p_0,v]\,</math></center>
<center><math>p_0 = m + (v-m)\frac{L}{L+S} + \frac{\frac{n-1}{n-1}}{L+S}\phi\,</math></center>
Each firm lists with probability:
<center><math>\alpha = 1 - \left ( \frac{\frac{n-1}{n-1}\phi}{v-m)S} \right )^{\frac{1}{n-1}}\,</math> with <math>\alpha \in (0,1)\,</math></center>
<center><math>F(p) = \frac{1}{\alpha} \left ( 1 - \left ( \frac{\frac{n-1}{n-1}\phi + (v-p)L}{(p-m)S} \right )^{\frac{1}{n-1}} \right )\,</math> on <math>[p_0,v]\,</math></center>
<center><math>p_0 = m + \frac{\frac{n-1}{n-1}}{S}\phi\,</math></center>