Difference between revisions of "Alonso Dessein Matouschek (2008) - When Does Coordination Require Centralization"

From edegan.com
Jump to navigation Jump to search
imported>Ed
imported>Ed
Line 13: Line 13:
 
===Basic Setup===
 
===Basic Setup===
  
There are two divisions, <math>j \in \{1,2\}/;</math>.  
+
There are two divisions, <math>j \in \{1,2\}\;</math>.  
  
Each division makes a decision <math>d/;</math>, based on local conditions <math>\theta_j in \mathbb{R}/;</math>.
+
Each division makes a decision <math>d\;</math>, based on local conditions <math>\theta_j in \mathbb{R}\;</math>.
  
 
The profits of the divisions are given by:
 
The profits of the divisions are given by:
  
:<math>\pi = K_1 - (d_1 - \theta_1)^2  - \delta (d_1 - d_2)^2/;</math>
+
:<math>\pi = K_1 - (d_1 - \theta_1)^2  - \delta (d_1 - d_2)^2\;</math>
  
:<math>\pi = K_2 - (d_2 - \theta_2)^2  - \delta (d_1 - d_2)^2/;</math>
+
:<math>\pi = K_2 - (d_2 - \theta_2)^2  - \delta (d_1 - d_2)^2\;</math>
  
 
Where:
 
Where:
*<math>K_j \in \mathbb{R}/;</math>, WLOG <math>K_j = 0/;</math>
+
*<math>K_j \in \mathbb{R}\;</math>, WLOG <math>K_j = 0\;</math>
*<math>\delta \in [0,\infty]/;</math> measures the importance of coordination
+
*<math>\delta \in [0,\infty]\;</math> measures the importance of coordination
*<math>\theta_j \sim U[-s_j,s_j]/;</math>, where the distribution is common knowledge but the draw is private
+
*<math>\theta_j \sim U[-s_j,s_j]\;</math>, where the distribution is common knowledge but the draw is private
  
  
The division managers have preferences (<math>\lambda \in [\frac{1}{2},1]/;</math> represents bias):
+
The division managers have preferences (<math>\lambda \in [\frac{1}{2},1]\;</math> represents bias):
  
:<math>u_1 = \lambda \pi_1 + (1-\lambda \pi_2)/;</math>
+
:<math>u_1 = \lambda \pi_1 + (1-\lambda \pi_2)\;</math>
  
  
:<math>u_2 = \lambda \pi_2 + (1-\lambda \pi_1)/;</math>
+
:<math>u_2 = \lambda \pi_2 + (1-\lambda \pi_1)\;</math>
  
  
 
The headquarters (HQ) manager has preferences:
 
The headquarters (HQ) manager has preferences:
  
:<math>u_h = \pi_1 + \pi_2/;</math>
+
:<math>u_h = \pi_1 + \pi_2\;</math>
  
  
The managers can send messages <math>m_1 \in M_1/;</math> and <math>m_2 \in M_2/;</math> respectively.  
+
The managers can send messages <math>m_1 \in M_1\;</math> and <math>m_2 \in M_2\;</math> respectively.  
  
 
There are two organisational forms:
 
There are two organisational forms:
Line 50: Line 50:
 
The game proceeds are follows:
 
The game proceeds are follows:
 
#Decision rights are allocated
 
#Decision rights are allocated
#Managers learn states <math>\theta_1/;</math> and <math>\theta_2/;</math> respectively
+
#Managers learn states <math>\theta_1\;</math> and <math>\theta_2\;</math> respectively
#Managers send messages <math>m_1/;</math> and <math>m_2/;</math> respectively
+
#Managers send messages <math>m_1\;</math> and <math>m_2\;</math> respectively
#Decisions <math>d_1/;</math> and <math>d_2/;</math> are made
+
#Decisions <math>d_1\;</math> and <math>d_2\;</math> are made
  
 
===Decision Making===
 
===Decision Making===
Line 58: Line 58:
 
====Under Centralization:====
 
====Under Centralization:====
  
HQ determines <math>d_1^C/;</math> and <math>d_2^C/;</math> by maximizing <math>u_h/;</math> with respect to these variables. The solutions are:
+
HQ determines <math>d_1^C\;</math> and <math>d_2^C\;</math> by maximizing <math>u_h\;</math> with respect to these variables. The solutions are:
  
:<math>d_1^C - \gamma_C \mathbb{E}[\theta_1|m} + (1-\gamma_C) \mathbb{E}[\theta_2|m}/;</math>
+
:<math>d_1^C - \gamma_C \mathbb{E}[\theta_1|m] + (1-\gamma_C) \mathbb{E}[\theta_2|m]\;</math>
  
  
:<math>d_1^C - \gamma_C \mathbb{E}[\theta_2|m} + (1-\gamma_C) \mathbb{E}[\theta_1|m}/;</math>
+
:<math>d_1^C - \gamma_C \mathbb{E}[\theta_2|m] + (1-\gamma_C) \mathbb{E}[\theta_1|m]\;</math>
  
  
 
where:
 
where:
  
:<math>\gamma_C = \frac{1+2\delta}{1+4\delta}/;</math>
+
:<math>\gamma_C = \frac{1+2\delta}{1+4\delta}\;</math>
  
  
====Centralization Comparative Statics:===
+
====Centralization Comparative Statics:====
  
*<math>\frac{d \gamma_C}{d\delta} < 0,  \gamma_C \in [\frac{1}{2},1]/;</math>
+
*<math>\frac{d \gamma_C}{d\delta} < 0,  \gamma_C \in [\frac{1}{2},1] \;</math>
*When <math>\delta = 0: <math>d_1^C = \mathbb{E}[\theta_1|m]/;</math>
+
*When <math>\delta = 0\;</math>: <math>d_1^C = \mathbb{E}[\theta_1|m]\;</math>
*When<math> \delta = 1: <math>d_1^C/;</math> puts more weight on <math>\mathbb{E}[\theta_2|m]/;</math>
+
*When<math> \delta = 1\;</math>: <math>d_1^C\;</math> puts more weight on <math>\mathbb{E}[\theta_2|m]\;</math>
*As <math>\delta \to infty/;</math>: equal weight is put on both, <math>d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]/;</math>
+
*As <math>\delta \to \infty\;</math>: equal weight is put on both, <math>d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]\;</math>
  
  
 
====Under Decentralization:====
 
====Under Decentralization:====
  
Each manager determines their own decision by maximizing <math>u_j/;</math> with respect to <math>d_j/;</math>, taking the message from the other party into account. This gives:
+
Each manager determines their own decision by maximizing <math>u_j\;</math> with respect to <math>d_j\;</math>, taking the message from the other party into account. This gives:
  
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_2|theta_1,m]/;</math>
+
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_2|theta_1,m]\;</math>
  
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_1|theta_2,m]/;</math>
+
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_1|theta_2,m]\;</math>
  
  
Note that the weight each decision puts on local information is increasing the bias <math>\lambda/;</math>, and decreasing in the need for coordination <math>\delta/;</math>.
+
Note that the weight each decision puts on local information is increasing the bias <math>\lambda\;</math>, and decreasing in the need for coordination <math>\delta\;</math>.
  
 
By taking expectations and subbing back in, we get:
 
By taking expectations and subbing back in, we get:
  
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta}  \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_1|\theta_2,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_2|theta_1,m] \right )/;</math>
+
:<math>d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta}  \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_1|\theta_2,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_2|theta_1,m] \right )\;</math>
  
  
:<math>d_2^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta}  \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_2|\theta_1,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_1|theta_2,m] \right )/;</math>
+
:<math>d_2^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta}  \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_2|\theta_1,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_1|theta_2,m] \right )\;</math>
  
  
====Decentralization Comparative Statics:===
+
====Decentralization Comparative Statics:====
*As <math>\delta/;</math> increases: each manager puts less weight on his own information, and more on a weighted average
+
*As <math>\delta\;</math> increases: each manager puts less weight on his own information, and more on a weighted average
*As <math>\delta \to infty/;</math>: again equal weight is put on both, <math>d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]/;</math>
+
*As <math>\delta \to \infty\;</math>: again equal weight is put on both, <math>d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]\;</math>
  
  
 
===Strategic Communication===
 
===Strategic Communication===
  
When <math>\theta=0/;</math> there is no reason to misrepresent. However, otherwise both under centralization and decentralization their is an incentive to exagerate.
+
When <math>\theta=0\;</math> there is no reason to misrepresent. However, otherwise both under centralization and decentralization their is an incentive to exagerate.
  
Under centralization, the need for coordination (a high <math>\delta/;</math>) exacerbates this problem (because the HQ manager is already a little insensitive to local conditions, and now becomes entire insensitive).
+
Under centralization, the need for coordination (a high <math>\delta\;</math>) exacerbates this problem (because the HQ manager is already a little insensitive to local conditions, and now becomes entire insensitive).
  
Under decentraliztaion, the need for coordination (a high <math>\delta/;</math>) mitigates this problem (as the managers become more responsive to each other's needs).
+
Under decentraliztaion, the need for coordination (a high <math>\delta\;</math>) mitigates this problem (as the managers become more responsive to each other's needs).
  
  
 
====With HQ (under centralization)====
 
====With HQ (under centralization)====
  
Let <math>\nu_1^* = \mathbb{E}[\theta_1|m]/;</math> be the expection of the local state that 1 would like HQ to have, so that:
+
Let <math>\nu_1^* = \mathbb{E}[\theta_1|m]\;</math> be the expection of the local state that 1 would like HQ to have, so that:
  
:<math>\nu_1^* =arg \max_{\nu_1} \mathbb{E} [  - \lambda(d_1 - \theta_1)^2  -(1-\lambda) (d_2 - \theta_2)^2- \delta (d_1 - d_2)^2  ]/;</math>
+
:<math>\nu_1^* =arg \max_{\nu_1} \mathbb{E} [  - \lambda(d_1 - \theta_1)^2  -(1-\lambda) (d_2 - \theta_2)^2- \delta (d_1 - d_2)^2  ]\;</math>
 
   
 
   
In equilibrium the beliefs of the HQ manager will be correct, so <math>\mathbb{E}_{m_2}( \mathbb{E}[\theta_1|m] ) = \mathbb{E}[\theta_1] = 0/;</math>, and likewise for <math>\theta_2/;</math>, so:
+
In equilibrium the beliefs of the HQ manager will be correct, so <math>\mathbb{E}_{m_2}( \mathbb{E}[\theta_1|m] ) = \mathbb{E}[\theta_1] = 0\;</math>, and likewise for <math>\theta_2\;</math>, so:
  
:<math>\nu_1^* - \theta_1 = \frac{(2 \lambda - 1) \delta}{\lambda+\delta}\theta_1 = b_C \cdot \theta_1/;</math>
+
:<math>\nu_1^* - \theta_1 = \frac{(2 \lambda - 1) \delta}{\lambda+\delta}\theta_1 = b_C \cdot \theta_1\;</math>
  
 
   
 
   
Where we will call <math>b_C/;</math> the bias in messages to the HQ. This bias is zero when <math>\theta_1 = 0/;</math>, and positive otherwise. It is also increasing in <math>| \theta_1 | , \lambda, \delta/;</math>.
+
Where we will call <math>b_C\;</math> the bias in messages to the HQ. This bias is zero when <math>\theta_1 = 0\;</math>, and positive otherwise. It is also increasing in <math>| \theta_1 | , \lambda, \delta\;</math>.
  
  
Line 130: Line 130:
 
In the same way we can calculate:
 
In the same way we can calculate:
  
:<math>\nu_1^* - \theta_1 = \frac{(2\lambda -1)(\lambda+\delta)}{\lambda(1-\lambda)+\delta}\theta_1 = b_D \theta_1/;</math>
+
:<math>\nu_1^* - \theta_1 = \frac{(2\lambda -1)(\lambda+\delta)}{\lambda(1-\lambda)+\delta}\theta_1 = b_D \theta_1\;</math>
  
 
   
 
   
Where we will call <math>b_D/;</math> the bias in messages to the other division manager. This bias is zero when <math>\theta_1 = 0/;</math>, and positive otherwise. It is also increasing in <math>| \theta_1 |/;</math> and <math>\lambda/;</math> (home bias), but decreasing in <math>\delta (the need for coordination).
+
Where we will call <math>b_D\;</math> the bias in messages to the other division manager. This bias is zero when <math>\theta_1 = 0\;</math>, and positive otherwise. It is also increasing in <math>| \theta_1 |\;</math> and <math>\lambda\;</math> (home bias), but decreasing in <math>\delta (the need for coordination).
  
  
 
===Communication Equilibria===
 
===Communication Equilibria===
  
The paper uses a Crawford and Sobel (1982) type model, which is covered in [[Grossman Helpman (2001) - Special Interest Politics Chapters 4 And 5 | Grossman and Helpman (2001)]], in which the state spaces <math>[-s_1,s_1]/;</math> and <math>[-s_2,s_2]/;</math> are partitioned into intervals. The size of the intervals (which determine how informative messages are) depends directly on the biases <math>b_D/;</math> and <math>b_C/;</math>.
+
The paper uses a Crawford and Sobel (1982) type model, which is covered in [[Grossman Helpman (2001) - Special Interest Politics Chapters 4 And 5 | Grossman and Helpman (2001)]], in which the state spaces <math>[-s_1,s_1]\;</math> and <math>[-s_2,s_2]\;</math> are partitioned into intervals. The size of the intervals (which determine how informative messages are) depends directly on the biases <math>b_D\;</math> and <math>b_C\;</math>.
  
 
The game uses a perfect Bayesian equilibria solution concept which requires:
 
The game uses a perfect Bayesian equilibria solution concept which requires:

Revision as of 18:57, 23 November 2010

Reference(s)

  • Alonso, Ricardo, Wouter Dessein and Niko Matouschek (2008), "When Does Coordination Require Centralization?" American Economic Review, Vol. 98(1), pp. 145-179. pdf


Abstract

This paper compares centralized and decentralized coordination when managers are privately informed and communicate strategically. We consider a multidivisional organization in which decisions must be adapted to local conditions but also coordinated with each other. Information about local conditions is dispersed and held by self-interested division managers who communicate via cheap talk. The only available formal mechanism is the allocation of decision rights. We show that a higher need for coordination improves horizontal communication but worsens vertical communication. As a result, decentralization can dominate centralization even when coordination is extremely important relative to adaptation.


The Model

Basic Setup

There are two divisions, [math]j \in \{1,2\}\;[/math].

Each division makes a decision [math]d\;[/math], based on local conditions [math]\theta_j in \mathbb{R}\;[/math].

The profits of the divisions are given by:

[math]\pi = K_1 - (d_1 - \theta_1)^2 - \delta (d_1 - d_2)^2\;[/math]
[math]\pi = K_2 - (d_2 - \theta_2)^2 - \delta (d_1 - d_2)^2\;[/math]

Where:

  • [math]K_j \in \mathbb{R}\;[/math], WLOG [math]K_j = 0\;[/math]
  • [math]\delta \in [0,\infty]\;[/math] measures the importance of coordination
  • [math]\theta_j \sim U[-s_j,s_j]\;[/math], where the distribution is common knowledge but the draw is private


The division managers have preferences ([math]\lambda \in [\frac{1}{2},1]\;[/math] represents bias):

[math]u_1 = \lambda \pi_1 + (1-\lambda \pi_2)\;[/math]


[math]u_2 = \lambda \pi_2 + (1-\lambda \pi_1)\;[/math]


The headquarters (HQ) manager has preferences:

[math]u_h = \pi_1 + \pi_2\;[/math]


The managers can send messages [math]m_1 \in M_1\;[/math] and [math]m_2 \in M_2\;[/math] respectively.

There are two organisational forms:

  • Under centralization division managers simultaneously send messages to HQ who makes decisions
  • Under decentralization the division managers simultaneously exchange messages and make decisions

The game proceeds are follows:

  1. Decision rights are allocated
  2. Managers learn states [math]\theta_1\;[/math] and [math]\theta_2\;[/math] respectively
  3. Managers send messages [math]m_1\;[/math] and [math]m_2\;[/math] respectively
  4. Decisions [math]d_1\;[/math] and [math]d_2\;[/math] are made

Decision Making

Under Centralization:

HQ determines [math]d_1^C\;[/math] and [math]d_2^C\;[/math] by maximizing [math]u_h\;[/math] with respect to these variables. The solutions are:

[math]d_1^C - \gamma_C \mathbb{E}[\theta_1|m] + (1-\gamma_C) \mathbb{E}[\theta_2|m]\;[/math]


[math]d_1^C - \gamma_C \mathbb{E}[\theta_2|m] + (1-\gamma_C) \mathbb{E}[\theta_1|m]\;[/math]


where:

[math]\gamma_C = \frac{1+2\delta}{1+4\delta}\;[/math]


Centralization Comparative Statics:

  • [math]\frac{d \gamma_C}{d\delta} \lt 0, \gamma_C \in [\frac{1}{2},1] \;[/math]
  • When [math]\delta = 0\;[/math]: [math]d_1^C = \mathbb{E}[\theta_1|m]\;[/math]
  • When[math] \delta = 1\;[/math]: [math]d_1^C\;[/math] puts more weight on [math]\mathbb{E}[\theta_2|m]\;[/math]
  • As [math]\delta \to \infty\;[/math]: equal weight is put on both, [math]d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]\;[/math]


Under Decentralization:

Each manager determines their own decision by maximizing [math]u_j\;[/math] with respect to [math]d_j\;[/math], taking the message from the other party into account. This gives:

[math]d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_2|theta_1,m]\;[/math]
[math]d_1^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta} \mathbb{E}[d_1|theta_2,m]\;[/math]


Note that the weight each decision puts on local information is increasing the bias [math]\lambda\;[/math], and decreasing in the need for coordination [math]\delta\;[/math].

By taking expectations and subbing back in, we get:

[math]d_1^D = \frac{\lambda}{\lambda + \delta} \theta_1 + \frac{\delta}{\lambda + \delta} \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_1|\theta_2,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_2|theta_1,m] \right )\;[/math]


[math]d_2^D = \frac{\lambda}{\lambda + \delta} \theta_2 + \frac{\delta}{\lambda + \delta} \left(\frac{\delta}{\lambda + 2 \delta} \mathbb{E}[\theta_2|\theta_1,m] + \frac{\lambda+ \delta}{\lambda + 2\delta} \mathbb{E}[\theta_1|theta_2,m] \right )\;[/math]


Decentralization Comparative Statics:

  • As [math]\delta\;[/math] increases: each manager puts less weight on his own information, and more on a weighted average
  • As [math]\delta \to \infty\;[/math]: again equal weight is put on both, [math]d_1^C = \mathbb{E}[\frac{\theta_1 + \theta_2}{2}|m]\;[/math]


Strategic Communication

When [math]\theta=0\;[/math] there is no reason to misrepresent. However, otherwise both under centralization and decentralization their is an incentive to exagerate.

Under centralization, the need for coordination (a high [math]\delta\;[/math]) exacerbates this problem (because the HQ manager is already a little insensitive to local conditions, and now becomes entire insensitive).

Under decentraliztaion, the need for coordination (a high [math]\delta\;[/math]) mitigates this problem (as the managers become more responsive to each other's needs).


With HQ (under centralization)

Let [math]\nu_1^* = \mathbb{E}[\theta_1|m]\;[/math] be the expection of the local state that 1 would like HQ to have, so that:

[math]\nu_1^* =arg \max_{\nu_1} \mathbb{E} [ - \lambda(d_1 - \theta_1)^2 -(1-\lambda) (d_2 - \theta_2)^2- \delta (d_1 - d_2)^2 ]\;[/math]

In equilibrium the beliefs of the HQ manager will be correct, so [math]\mathbb{E}_{m_2}( \mathbb{E}[\theta_1|m] ) = \mathbb{E}[\theta_1] = 0\;[/math], and likewise for [math]\theta_2\;[/math], so:

[math]\nu_1^* - \theta_1 = \frac{(2 \lambda - 1) \delta}{\lambda+\delta}\theta_1 = b_C \cdot \theta_1\;[/math]


Where we will call [math]b_C\;[/math] the bias in messages to the HQ. This bias is zero when [math]\theta_1 = 0\;[/math], and positive otherwise. It is also increasing in [math]| \theta_1 | , \lambda, \delta\;[/math].


With each other (under decentralization)

In the same way we can calculate:

[math]\nu_1^* - \theta_1 = \frac{(2\lambda -1)(\lambda+\delta)}{\lambda(1-\lambda)+\delta}\theta_1 = b_D \theta_1\;[/math]


Where we will call [math]b_D\;[/math] the bias in messages to the other division manager. This bias is zero when [math]\theta_1 = 0\;[/math], and positive otherwise. It is also increasing in [math]| \theta_1 |\;[/math] and [math]\lambda\;[/math] (home bias), but decreasing in [math]\delta (the need for coordination). ===Communication Equilibria=== The paper uses a Crawford and Sobel (1982) type model, which is covered in [[Grossman Helpman (2001) - Special Interest Politics Chapters 4 And 5 | Grossman and Helpman (2001)]], in which the state spaces \lt math\gt [-s_1,s_1]\;[/math] and [math][-s_2,s_2]\;[/math] are partitioned into intervals. The size of the intervals (which determine how informative messages are) depends directly on the biases [math]b_D\;[/math] and [math]b_C\;[/math].

The game uses a perfect Bayesian equilibria solution concept which requires:

  1. Communication rules are optimal given the decision rules
  2. Decision rules are optimal given belief functions
  3. Beliefs are derived from the communication rules using Bayes' rule (whenever possible).